Cost-Effective 4DoF Manipulator for General Applications
Aug 1, 2021·
,,,,·
0 min read

Sandro Magalhães
António Paulo Moreira
Filipe Neves Dos Santos
Jorge Dias
Luis Santos
Abstract
Nowadays, robotic manipulators’ uses are broader than industrial needs. They are applied to perform agricultural tasks, consumer services, medical surgeries, among others. The development of new cost-effective robotic arms assumes a prominent position to enable their wide-spread adoption in these application areas. Bearing these ideas in mind, the objective of this paper is twofold. First, introduce the hardware and software architecture and position-control design for a four Degree of Freedom (DoF) manipulator constituted by high-resolution stepper motors and incremental encoders and a cost-effective price. Secondly, to describe the mitigation strategies adopted to lead with the manipulator’s position using incremental encoders during startup and operating modes. The described solution has a maximum circular workspace of 0.7 m and a maximum payload of 3 kg. The developed architecture was tested, inducing the manipulator to perform a square path. Tests prove an accumulative error of 12.4 mm. All the developed code for firmware and ROS drivers was made publicly available.
Type
Publication
Intelligent Systems and Applications