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Resumo

A população mundial tem vindo a experimentar um crescimento exponencial, o que faz
aumentar a pressão sobre os recursos agrícolas disponíveis. Apesar disso, a extensão de ter-
ras aráveis para o cultivo de alimentos tem permanecido praticamente inalterada, resultando
num desiquilíbrio entre a oferta agrícola e o crescente aumento populacional. Este desequi-
líbrio contribui para um aumento crítico nos índices de fome e subnutrição, que afectam
actualmente ≥12.9 % da população global.

Perante esta realidade, torna-se imperativo que os produtores adotem medidas para op-
timizar a produção agrícola, em vias de alcançar níveis de eficiência e inteligência que per-
mitam suprir as necessidades alimentares da sociedade de forma sustentável. Neste con-
texto, a aplicação de sistemas robóticos surge como uma solução promissora para enfrentar
os desafios inerentes à agricultura. Alinhada com a agenda europeia de investigação para a
robótica, os objectivos de desenvolvimento sustentável (ODS), e a Federação Internacional
de Robótica (IFR), a implementação destes sistemas robóticos pode não só aumentar a pro-
dutividade agrícola, mas também mitigar obstáculos significativos do sector.

De acordo com a IFR, os robôs têm potencial para contribuir significativamente para a
realização dos ODS estabelecidos pela ONU na Agenda 2030. Especificamente, os ODS 2, 8,
9 e 15, que visam erradicar a fome, promover o crescimento económico sustentável, fomen-
tar a inovação tecnológica e proteger a biodiversidade terrestre, respectivamente, podem ser
impulsionados pela adopção de tecnologias robóticas na agricultura. A automação da mon-
itorização de culturas agrícolas, por exemplo, pode reduzir a dependência da aplicação de
produtos químicos e aumentar a eficiência da colheita, contribuindo assim para a segurança
alimentar global e para o desenvolvimento socioeconómico das comunidades agrícolas.

No âmbito específico da robótica aplicada à agricultura, o estado da arte tem explorado
diversas abordagens para a detecção e segmentação de frutos e folhas em ambientes exter-
nos, tais como campos agrícolas, e estufas. No entanto, as soluções existentes enfrentam
desafios significativos em lidar com obstáculos naturais, como a oclusão causada por folhas
e outros elementos vegetais. Nesse sentido, estratégias baseadas em percepção ativa têm sido
propostas como uma forma de aprimorar a capacidade dos robôs para adquirir informações
do ambiente de maneira eficaz.

No âmbito desta tesem, uma revisão sistemática da literatura foi conduzida para investi-
gar o estado da arte em percepção ativa para robótica aplicada à agrícola, focando de forma
particular a colheita automatizada de frutos. Os estudos analisados destacaram a prevalência
de abordagens fundamentadas em técnicas de aprendizagem profunda (deep learning), re-
conhecidas como as mais avançadas e eficientes para a detecção de objetos em ambientes
complexos. Entre os modelos analisados, destacam-se aqueles baseados nas arquiteturas
YOLO e SSD, incluindo a SSD MobileNet v2, a SSD Inception v2 e a SSD ResNet 50. Estes mod-
elos demonstraram uma capacidade satisfatória na detecção de frutos, com desempenho mé-
dio de F1 em torno de 60 % e velocidades de inferência de até 25 FPS utilizando FPGAs.
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Apesar dos avanços significativos alcançados, os modelos existentes ainda não permitem
a percepção tridimensional de frutos, utilizando câmaras monoculares. Como resposta a essa
lacuna, foram desenvolvidos dois algoritmos baseados em informações visuais para estimar
a posição dos frutos no espaço tridimensional. O MonoVisual3DFilter e o Estimador de Mel-
hores Poses de Observação (BVE) combinado com o filtro de Kalman extendido (EKF), uti-
lizando dados obtidos pelo sistema de detecção de objetos, foram desenvolvidos para inferir
a distância e a posição dos frutos no espaço de tarefas. Ambas as abordagens demonstraram
resultados promissores, com erros de estimação entre 1 cm e 3 cm.

Ao longo deste estudo, foram gerados conjuntos de dados visuais e código-fonte, os quais
foram disponibilizados publicamente seguindo os princípios de dados abertos da união eu-
ropeia, por meio das plataformas ZENODO e GitLab do INESC TEC. Esta partilha de recursos
visa promover a transparência e a colaboração na comunidade científica, facilitando a repli-
cação e a expansão do conhecimento gerado nesta área de investigação.



Abstract

The global population is rapidly increasing, leading to significant challenges in hunger
and undernourishment, now affecting ≥12.9 % of people worldwide. With agricultural land
being finite and only marginally expandable, it’s crucial to enhance productivity by adopt-
ing precision and intelligent farming techniques. Robotics technology emerges as a key so-
lution to improve crop monitoring and harvesting efficiency, thus addressing this pressing
societal issue, according to the Agenda for Robotics in Europe. The International Federation
of Robotics (IFR) also notes that robots can play a significant role in meeting these challenges,
contributing to the Sustainable Development Goals (SDGs) set by the United Nations (UN) in
Agenda2030. These goals include, between others: zero hunger; decent work and economic
growth; industry, innovation, and infrastructure; and life on land (goals 2, 8, 9, and 15, respec-
tively).

In robotics for agriculture, there has been a focus on developing methods to detect and
segment fruits or branches in open-field environments. Despite these efforts, many initia-
tives face challenges due to low visibility and occlusions. The exploration of active perception
as an alternative approach to tackle these challenges has been minimal. A comprehensive re-
view was conducted to assess the current state-of-the-art, highlighting the limitations and
potential of active perception for efficient fruit detection and harvesting.

Throughout this thesis, we researched the application of advanced visual perception sys-
tems powered by deep learning for identifying fruits and other objects in agricultural scenes.
We experimented with various deep learning models, including YOLO and SSD algorithms,
specifically SSD MobileNet v2, SSD Inception v2, and SSD ResNet 50. These models were op-
timised on specialised hardware to ensure reliable, near-real-time performance. The mod-
els achieved detection F1 scores around 60 % for tomatoes and grape bunches, with accel-
eration techniques boosting detection speeds up to 25 FPS on FPGAs. Further experiments
leveraging the FGPAs’ programmable logic enabled us to achieve object detection rates at
6610.94 FPS using a MobileNet v2 classifier.

For the estimation of fruits’ 3D positions using monocular cameras, we developed knowl-
edge based algorithms, namely the MonoVisual3DFilter, and the Best Viewpoint Estimator
(BVE) + Extended Kalman Filter (EKF). The MonoVisual3DFilter utilises detection data com-
bined with histogram filters to infer fruit positions, while the BVE + EKF method iteratively
corrects distance estimates to fruits based on similar data. Both approaches yielded accurate
results, with estimation errors within the range of 1 cm to 3 cm.

We have made the datasets and some of the code developed during this project available
to the public, adhering to the european open data principles, via ZENODO and GitLab plat-
forms.
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“You should be glad that bridge fell down.

I was planning to build thirteen more to that same design”
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Chapter 1

Introduction

This research aims to contribute to the state-of-the-art (SOTA) of agricultural robots, namely

harvesting robots. Innovating robots with cognitive algorithms can reduce the robots’ hardware

costs and improve robots’ efficiency. Active perception comprehends the philosophy of algorithms

that intend to make robots smarter.

This chapter is divided into six sections. Section 1.1 establishes this research’s overall motiva-

tion and context. Section 1.2 defines the problem this research aims to solve. Sections 1.3 and 1.4

define the research questions and the objectives this thesis aims to achieve and solve. Section 1.5

describes the research articles published in the scope of this thesis and other main contributions,

such as datasets, and the overall document structure.

1.1 Contextualisation and motivation

The strategic research agenda for robotics in Europe 2014-2020 (SRA2020) [1] highlights

the importance of robotics in agriculture, especially for enhancing crop monitoring and har-

vesting. This is crucial to support a rapidly growing global population facing hunger and

undernourishment issues, affecting ≥12.9 % of people worldwide. With limited agricultural

land, which can only be marginally expanded, there’s a pressing need for more efficient re-

source utilisation. The United Nations (UN) has issued a warning about the urgent need for a

transformative change in the global food and agricultural system to meet people’s needs [2].

This urgency is echoed in the sustainable development goals (SDGs) set by the UN in the

2030 Agenda [3]. Robotics in agriculture can play a significant role in achieving several SDGs,

according to International Federation of Robotics (IFR), including goal 2 (zero hunger), goal

8 (decent work and economic growth), goal 9 (industry, innovation, and infrastructure), and

goal 15 (life on land). Robots can help mechanise and automate labour-intensive and repeti-

tive tasks, reduce soil compaction, and enable the precise application of fertilizers and chem-

icals, thus minimising usage and preventing soil acidification.

Tomatoes stand out among crops for their significance in the global production of fruits.

As the second most harvested vegetable globally and a leader in greenhouse vegetable

production, tomatoes are a key agricultural product [4]. Over the past decades, greenhouse

1
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tomato production has seen a global increase due to its ability to ensure high productivity

and a stable year-round supply. From 2003 to 2017, world tomato production rose annually

from 124 million tonnes to over 177 million tonnes, with consumption growing at about 2.5 %

annually [4]. In Almería, Spain, home to the world’s largest concentration of greenhouses

(over 30000 ha), tomatoes represent 37.7 % of total production [5]. Grape production also

plays a significant role globally, especially in wine production, with regions like Douro Valley

in Portugal known for their unique terrains and high-quality wines.

Greenhouse tomatoes are highly valued but come with substantial costs. Manual har-

vesting of tomatoes is particularly labour-intensive, characterised by sporadic, tiring work

that requires significant physical effort and repetition. In greenhouses, manual labour can

constitute up to 50 % of total production costs, with a significant portion of this expense com-

ing from tomato harvesting, which demands 700 h/yr/ha to 1400 h/yr/ha depending on the

cropping system [6, 7]. The challenge of manual tomato harvesting is exacerbated by a global

labour shortage and poor working conditions [7–9], necessitating the hire of additional work-

ers during peak seasons [9]. Consequently, there is a growing interest among greenhouse

companies in reducing labour costs through automation, including the development of har-

vesting robots [9, 10].

Creating robots for use in greenhouses and the steep slopes of Douro Valley vineyards

presents unique challenges. These robots must navigate through unstructured environments

and handle tasks with a high degree of uncertainty. Sensing mechanisms must be capable of

identifying tomatoes or grape bunches amidst various disturbances such as uneven plant ar-

rangements, differing plant sizes and shapes, and challenges like leaf coverage, sun glare, and

changing light conditions [11, 12]. Additionally, the timing for harvesting climacteric fruits

like tomatoes can vary. Depending on their end use, tomatoes can be picked during the physi-

ological maturity phase when they are still green, allowing them to ripen post-harvest, or later,

when they have turned red. The choice of when to harvest is influenced by how the tomatoes

will be processed and distributed. For instance, tomatoes intended for the local fresh market

are typically harvested when red, whereas those meant for long-distance transport are picked

at an earlier maturation stage when they are still green (Figure 1.1).

(a) Green tomato (b) Reddish tomato (c) Red tomato

Figure 1.1: Tomatoes’ ripeness levels: (a) physiological or horticultural maturation; (b) early
phase of ripening; and (c) ripened tomato.
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Current research in agricultural robotics is predominantly focused on in-field tasks nec-

essary to guarantee a quality crop and harvest time, such as monitoring, soil sensing, nutri-

ent and pesticide application, irrigation control, harvesting, and processing [13, 14]. How-

ever, developing ground robots to accomplish these tasks is a complex challenge because

the robotic sensing, recognition and interpretation of the crop need to be efficient, accurate,

and robust in these unstructured environments [11, 15]. In fact, current research in preci-

sion agriculture is limited and needs significant improvement. The few existing tests made

with harvesting robots present a very low success rate [14]. Despite the difficulties imposed to

drive and deploy an harvesting robot, there are already some prototypes developed for robotic

tomato harvesting [10, 16–20]. On average, the harvesting robots described in the literature

have a success rate of 85 % on fruit localisation under controlled scenarios [11], whereas this

number falls to 2 % to 6 % in real-world scenarios [21]. The low success in real-world sce-

narios is due to the difficulties of navigation and perception in unstructured scenarios and

limitations imposed by the autonomy of robots [22].

Active robot perception is a promising solution to improve the effectiveness of these

robots [23–25]. Perception taken actively distinguishes from conventional perception be-

cause sensing systems can be an integral part of the manipulation and intelligence system,

which improves the robot’s performance significantly, in terms of object detection and

manipulation [26, 27]. These sensing systems include 3D vision sensors [28] and other sensor

technologies [14, 29]. This approach provides faster and more accurate real-time information

about objects positioning, making the robots capable of conducting precision agricultural

tasks [30]. In addition, other aspects need to be considered and further developed, such as

sensors and manipulators’ range, weight, safety, processing time, and scanning environment

conditions [31]. These aspects are important to achieve the robotic system’s feasibility

through hardware and software minimisation, ease of integration, and cost-effectiveness

[30]. New mechanical designs of robot grippers could also be a solution to provide higher

accuracy in perception [32, 33].

This work’s originality is developing cost-effective and open-field robust active perception

systems for agricultural robots, enabling their operation in cultivars.

1.2 Problem statement

Harvesting, monitoring, and pruning are essential tasks in agriculture. Typical robots for

these tasks are equipped with one or various manipulators, mounted on mobile platforms

to efficiently perform the tasks [34]. Some studies have explored the use of manipulators on

mobile platforms that navigate along trails [35]. To enhance their functionality, these robots

are equipped with specialised sensors and end-effectors [36]. However, to be cost-effective,

the number of sensors on these robots should be minimised. Generally, agricultural robots

utilise three main types of sensors: cameras, LiDARs1, and global navigation satellite systems

1Light detection and rangings
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(GNSSs), which are primarily used for localisation, mapping [37], and ensuring safety. Future

robots should also consider radar as a promising technology that provides relevant features

from the scene [38]. Samples of features are the detection of hidden objects and cues from

the scene due to their higher permeability to vegetation. Figure 1.2 showcases a mobile robot

designed for agricultural tasks.

The AgRob v16, as depicted in Figure 1.2, is a prototype of the INESC TEC’s TRIBE Labo-

ratory2. It is built on the Clearpath Husky mobile platform3 and features all-terrain wheels,

making it suitable for both open-field and controlled agricultural environments. This robot

is currently being tested in various settings, including Douro’s steep slope vineyards, planar

vineyards, and tomato greenhouses. It is equipped with a perception and control head that

collects environmental data for navigation and mapping. Additionally, the Robotis Manipula-

tor-H, a six degree of freedom (DoF) anthropomorphic manipulator, is installed at the robot’s

rear to carry out tasks such as monitoring, pruning, and harvesting. The robot incorporates

various sensors in both its control head and manipulator, including multiple stereo and RGB-

D cameras, an infrared (IR) camera, a 3D LiDAR, an IMU4, and a GNSS.

Agricultural robots encounter numerous challenges in successfully harvesting and ma-

nipulating fruits. Figure 1.3 depicts a typical environment in a flat vineyard of white bunches

of grapes at Quinta da Aveleda, Paredes, Portugal. In this figure, several grapes are largely hid-

den behind the leaves, providing natural protection against solar radiation. Additionally, the

stem is challenging to observe. The vineyard consists of many aligned trees (Fig. 1.5), creat-

ing walls of vegetation. These trees, often intertwined, feature dense foliage and large leaves,

with fruits typically growing beneath and behind the leaves to shield themselves from intense

sunlight. Similarly, figure 1.4 shows the interior of a greenhouse used for tomato production

in Barroselas, Viana do Castelo. At the greenhouse entrance, there are tomatoes displaying

various colours, indicating their different stages of physiological maturity. It is rare to find

fully ripe and red tomatoes in this greenhouse. Like grape production, tomatoes usually grow

hidden beneath and behind leaves for protection against solar radiation. Furthermore, toma-

toes can be harvested at various physiological maturity stages, adding complexity to the har-

vesting process as the system must assess the maturity phase before harvesting. Thus, the

challenge of harvesting is encapsulated in the overarching goal:

Main Goal 1. Can a robotic manipulator detect and harvest effectively fruits in unstruc-

tured environments, using cost-effective and small size sensors?

To ensure high-quality fruit reaches consumers, there are specific harvesting techniques for

different fruits. For instance, grapes must be carefully harvested by cutting the stem, while

tomatoes can be either pulled or cut by the stem, although the exact method may vary based

2See INESC TEC. “TRIBE—Laboratory of Robotics and IoT for Smart Precision Agriculture and Forestry,” INESC
TEC. (2023), [Online]. Available: http://tribe.inesctec.pt (visited on 12/11/2023).

3See Clearpath Robotics. “Husky—unmanned ground vehicle.” (Feb. 20, 2024), [Online]. Available: https:
//clearpathrobotics.com/husky-unmanned-ground-vehicle-robot/ (visited on 05/16/2024).

4Inertial movement unit
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3D LiDAR

RGB-D camera

Stereo camera

Thermal
camera

RTK-GNSS

RGB or RGB-D 
camera

Mobile
platform

Manipulator

(a) AgRob v16 and the installed sensors

(b) Front view (c) Rear view

Figure 1.2: AgRob v16 — A mobile robot for agricultural purposes, developed by INESC TEC
— TRIBE Laboratory, Laboratory of Robotics and IoT for Agriculture and Forestry. Designed
for agricultural tasks in vineyards and other cultivars, including pruning, monitoring, and
harvesting.

on the tomato species. It’s crucial for harvesting robots to accurately identify the fruit, its

stem, and any surrounding obstacles to harvest successfully. Additionally, these systems must

be able to assess a fruit’s maturity stage accurately before harvesting to ensure that properly

riped fruits are picked.

To navigate through the foliage efficiently, the harvesting manipulator should be

equipped with small sensors that enhance manoeuvrability. Moreover, both the robot and

its sensors need to be cost-effective and reliable across various weather conditions to meet

the budget and needs of farmers.

As discussed in the literature review (chapter 2), there is significant room for improvement

in these systems. Enhancements in speed, visual perception efficiency, and the capabilities

for manipulation and grasping are essential to match the effectiveness of human workers in

harvesting tasks.
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Figure 1.3: Sample image depicting bunches of white grapes hidden on a vine.

Figure 1.4: Greenhouse of tomato entrance with tomatoes in the plants and on the ground.

■

Robots designed for agricultural purposes, such as fruit harvesting, must be equipped

with various sensors to gather information about their environment effectively. Frontal sen-

sors, as in the figure 1.2, frequently utilised for navigation and localisation, can also serve to

identify fruits from specific angles, activating the harvesting perception system to focus on

potential regions of interest (RoIs). However, these sensors often fall short of providing the

detailed information required for harvesting. To obtain precise and accurate data, at least

one sensor, such as a camera or a LiDAR, should be mounted on the harvesting tool itself.

This complements the data collected by the general sensors used in mobile robotics. So, the

system presents challenges and procedures that need to be addressed to achieve the primary
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Figure 1.5: Douro’s steep slope vineyards

goal previously outlined. These procedures and challenges include:

• Utilising manipulator sensors to roughly identify regions of interest, such as fruits and

stems, thereby engaging the robot’s Attention Mechanism towards potential harvesting

sites.

• Selecting a specific region of interest from the identified areas, optimising the harvest-

ing process while avoiding conflicts between regions. This entails processing the data

from that region and selecting the best approachable region of interest, a task referred

to as the Fixation Mechanism.

• Detecting and segmenting fruits and stems for accurate mapping and localisation,

mainly performed by detection and segmentation (DaS) and 3D Perception.

• Enhancing environmental information through well-defined arm movements for 3D

mapping, aiming to identify the optimal cutting or harvesting point. This involves Data

Augmentation and Viewpoint Selection.

• Planning the most efficient path to the cutting point, ensuring visibility of the cutting

point on the stem, highlighting the need for Motion Planning algorithms.

• Creating and controlling the robot’s trajectory to the cutting point, incorporating online

replanning based on the precise available information about the cutting point. This falls

under Motion Plan and Control.

These requirements highlight the need for active perception systems, as depicted in Fig-

ure 1.6. The figure presents a framework for developing active perception systems grounded
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in a literature review, in chapter 2, and the objectives of this research, serving as a guideline

for the work conducted in this thesis. The proposed architecture depicts a set of mechanisms

to gather information from the environment smartly for successfully performing tasks, a role

of active perception algorithms. The different detailed algorithms are set into different groups

for different purposes, such as attention, fixation, viewpoint selection, and data augmenta-

tion. They are also complemented by control algorithms for the robot’s motion planning and

control and data acquisition algorithms such as detection and segmentation.

Viewpoint selection and Data Segmentation

Attention Mechanism

Sensors alignment

DaS

False Enough to
Harvest?

Selection of the
cutting point

Motion planning

Motion replanning
and control

Viewpoint Selection 

True

Fixation Mechanism

Figure 1.6: Generic framework for an active perception system. Based on the literature review
in Chapter 2 and the research objectives, this framework serves as a guideline for this thesis.

Furthermore, the agricultural sector’s need for robots that can match or surpass human

labour capabilities is imperative. This means robots must process sensory data with high

speed, precision, and efficiency, ensuring the optimisation of computational and hardware

resources, as well as energy efficiency for extended operation times.

The cognitive development of harvesting robots encounters several challenges, including:

• varying lighting conditions;
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• varying fruit shape, size, and colour;

• occlusions of the regions of interest;

• dynamics or unstable regions of interest;

• the need for high manoeuvrability end-effector tools, and;

• complex and computing-demanding algorithms.

Addressing these challenges is crucial in agricultural settings, such as vineyards and

tomato greenhouses, where the development of efficient harvesting robots capable of picking

all fruits on plants is essential. Robust and rapid active perception mechanisms can sig-

nificantly enhance information gathering, management, processing, and decision-making

processes in these environments.

1.3 Research questions and hypothesis

In response to the problem outlined in Section 1.2, this thesis proposes some research

questions aimed at addressing and resolving the identified issue. The overarching goal, spec-

ified in the goal 1, encapsulates the primary concern into a single, broad inquiry. This primary

goal is further broken down into three specific research questions, which will drive the scope

of the work presented. For each of these research questions is possible to formulate hypothe-

ses to steer the investigation towards feasible solutions.

Research Question 1. Do RGB cameras meet the necessary criteria for accurately detecting

and tracking fruits and trees, as well as controlling a robotic manipulator for harvesting,

under various illumination conditions?

In literature, RGB and RGB-D cameras are commonly utilised for better perception and lo-

calisation of fruits and other regions of interest. However, RGB-D cameras tend to be more

expensive and larger than their RGB counterparts. The exploration of other sensors, such as

LiDAR and unconventional camera types (e.g., multispectral, thermal, and infrared cameras),

has also been considered. Despite their larger size and the high cost of accurate versions, their

effectiveness hasn’t been thoroughly clarified in the literature. Yet, sensors complementing

RGB cameras are frequently employed.

The literature review in chapter 2 highlights the use of artificial intelligence (AI) algorithms

for image processing and analysis. These algorithms are generally categorised into two main

groups: (i) classical machine learning (ML) and computer vision (CV) techniques, and (ii)

deep learning (DL) models. ML approaches often involve more traditional algorithms, such

as support vector machine (SVM), combined with CV methods like region growing, skeletoni-

sation, and colour thresholding. DL, on the other hand, is often seen as a ‘black box’ approach

that processes images to identify the most probable regions of interest. It is applied for clas-

sification, object detection, or segmentation tasks in image analysis.
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Despite the focus on identifying fruits for harvesting, recognising the surrounding envi-

ronment remains crucial to refine the detection accuracy. For example, fruits on the ground

should not be picked up as they might be rotten, and the system should target only ripe fruits

for harvesting. Moreover, incorporating effective attention mechanisms can enhance the sys-

tem’s efficiency by allocating computational resources primarily to the regions of interest,

such as scanning the trees for fruits and locating the stems near these fruits.

Therefore, this research question aims to evaluate the effectiveness of using RGB cameras

for detecting and tracking fruits in cultivars. It will explore the most suitable strategies to

achieve this goal efficiently.

Hypothesis. To study models and detection techniques, such as DL models, to identify fruits

under various conditions in cultivars more effectively. Additionally, explore other algorithms

and strategies to enhance knowledge about regions of interest, facilitating an active perception

system.

Hypothesis. Studying the perception needs of the regions of interest and determining whether

they match the configurations of various sensors, like eye-in-hand coordination and peripheral

cameras, among others.

Hypothesis. DL strategies are increasingly being recognised as effective approaches for de-

tecting and segmenting regions of interest. The current state-of-the-art features a multitude of

DL models. Yet, there is a critical need for comprehensive benchmarking and in-depth analysis

to evaluate their potential for enhancements in accuracy and reliability. This is particularly vi-

tal for ensuring robustness against variations in illumination and environmental conditions.

Additionally, it’s important to explore potential improvements to better accommodate sequen-

tial data flow.

■

Research Question 2. What strategies can be implemented to localise fruits and other ob-

jects in the 3D task space?

Numerous methods have been devised to convert sensor data about specific areas into useful

information for tasks. The most commonly mentioned sensors in research are RGB-D sen-

sors. However, literature reviews indicate that their effectiveness is compromised by natural

factors like sunlight or rain. To counteract these issues, additional sensors can be integrated,

although this approach increases the system’s complexity and cost. Moreover, it leads to a

bulkier sensory setup, complicating its integration with a robotic arm and its manoeuvrabil-

ity within crops.

Hypothesis. In geospatial analysis, triangulation methods are commonly employed. Simi-

larly, observation estimators and statistical algorithms are frequently used in various contexts

for prediction purposes. Therefore, this research will focus on studying algorithms that leverage
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these principles, among others, to collect data about specific regions of interest efficiently. This

will enhance the functionality of active perception systems.

■

Research Question 3. What strategies can be implemented to achieve real-time optimisa-

tion in harvesting?

The literature review discussed in chapter 2 reveals that the majority of harvesting robots take

longer to complete the harvesting process compared to human workers. This increased time

consumption is primarily due to the time required for data processing and robot movement.

The need for complex and sophisticated algorithms for image processing and motion

planning significantly contributes to this delay. Furthermore, the extensive data collected

from sensors adds to the processing time, making the overall operation slower.

Hypothesis. Many of the complex algorithms used for data processing and planning paths

rely on loops that can run at the same time, through parallelisation. Therefore, parallelisation

and other optimisation techniques, along with edge computing, can enhance the efficiency and

speed of these algorithms.

■

1.4 Aim and scope

Given the problem statement in section 1.2, alongside the research questions outlined in

section 1.3, and considering the current advancements in robotic technologies for harvesting

tasks as discussed in chapter 2, this research thesis aims to explore, benchmark, and advance

the development in this field. Towards this scope and aims the following efforts were devel-

oped:

• Robust active perception algorithms, reliable under numerous weather conditions, to

recognise fruits and other elements, in real-time, for harvesting tasks;

• Reliable and intelligent decision support systems to identify and localise the regions of

interest, considering the gathered and processed data, and;

• Optimised robotic harvesting solutions that may be competitive and complimentary to

human labour.

This work aimed to compare various solutions, including combinations of sensors, ma-

nipulators, and processing devices. We also focused on the optimisation concerns towards

fast and near real-time algorithms. So, we tested perception and intelligent algorithms in

terms of their processing speed in simulation and laboratory-simulated agricultural contexts.
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1.5 Document Structure and Contributions

This section lists this PhD’s contributions to the proposed research topic. Some of these

publications have not yet been published in the press. However, they are relevant to this work.

The section also contributes with a global overview of the following chapters of this thesis.

1.5.1 Main contributions

[C41] S. A. Magalhães, A. P. Moreira, F. N. dos Santos, and J. Dias, “Active perception fruit har-

vesting robots — a systematic review,” Journal of Intelligent & Robotic Systems, vol. 105,

no. 14, May 2022. DOI: 10.1007/s10846-022-01595-3.

[C42] S. A. Magalhães et al., “Evaluating the Single-Shot MultiBox detector and YOLO deep

learning models for the detection of tomatoes in a greenhouse,” Sensors, vol. 21, no. 10,

p. 3569, May 2021, ISSN: 1424-8220. DOI: 10.3390/s21103569.

[C43] S. C. Magalhães, F. N. dos Santos, P. Machado, A. P. Moreira, and J. Dias, “Benchmark-

ing edge computing devices for grape bunches and trunks detection using accelerated

object detection single shot multibox deep learning models,” Engineering Applications

of Artificial Intelligence, vol. 117, p. 105 604, Jan. 2023. DOI: 10.1016/j.engappai.

2022.105604.

[C44] S. C. Magalhães, F. N. dos Santos, A. P. Moreira, and J. Dias, “MonoVisual3DFilter:

3D tomatoes’ localisation with monocular cameras using histogram filters,” Robotica,

2024, Publication in Press.

[C45] S. A. Magalhães, A. P. Moreira, F. N. do Santos, and J. Dias, “BVE+ EKF: A viewpoint es-

timator for the estimation of the object’s position in the 3D task space using extended

Kalman filters,” in Proceedings of the 21st International Conference on Informatics in

Control, Automation and Robotics: ICINCO, Article submitted, INSTICC, Porto, Portu-

gal: SciTePress, 2024.

1.5.2 Complimentary contributions

[C46] T. C. Padilha, G. Moreira, S. A. Magalhães, F. N. dos Santos, M. Cunha, and M. Oliveira,

“Tomato detection using deep learning for robotics application,” in Progress in Artifi-

cial Intelligence. EPIA2021, G. Marreiros, F. S. Melo, N. Lau, H. Lopes Cardoso, and L. P.

Reis, Eds., 12981 vols., ser. Lecture Notes in Computer Science, Springer International

Publishing, 2021, pp. 27–38. DOI: 10.1007/978-3-030-86230-5_3.

[C47] A. S. Aguiar et al., “Grape bunch detection at different growth stages using deep learn-

ing quantized models,” Agronomy, vol. 11, no. 9, p. 1890, Sep. 2021, ISSN: 2073-4395.

DOI: 10.3390/agronomy11091890.

https://doi.org/10.1007/s10846-022-01595-3
https://doi.org/10.3390/s21103569
https://doi.org/10.1016/j.engappai.2022.105604
https://doi.org/10.1016/j.engappai.2022.105604
https://doi.org/10.1007/978-3-030-86230-5_3
https://doi.org/10.3390/agronomy11091890
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[C48] G. Moreira, S. A. Magalhães, T. Pinho, F. N. dos Santos, and M. Cunha, “Benchmark of

deep learning and a proposed HSV colour space models for the detection and classi-

fication of greenhouse tomato,” Agronomy, vol. 12, no. 2, p. 356, Jan. 2022. DOI: 10.

3390/agronomy12020356.

[C49] S. Magalhães, F. N. D. Santos, and S. Shyam, Grape detection using Vitis AI and

RetinaNet, Online, Apr. 2022. [Online]. Available: https://www.hackster.io/

452741/grape-detection-using-vitis-ai-and-retinanet-7d0d71.

1.5.3 Public Open Datasets

[C50] S. A. Magalhães, Dataset of tomato inside greenhouses for object detection in Pascal

VOC, Pascal VOC, INESC TEC research data repository, Dataset, Last accessed on April

27th, 2023, INESC TEC, Jan. 2021. DOI: 10.25747/pc1e-nk92. [Online]. Available:

https://rdm.inesctec.pt/dataset/ii-2021-001.

[C51] S. A. Magalhães, G. Moreira, F. N. dos Santos, and M. Cunha, AgRobTomato dataset:

Greenhouse tomatoes with different ripeness stages, Pascal VOC, Dataset, INESC TEC,

2021. DOI: 10.5281/ZENODO.5596799.

[C52] G. Moreira, S. A. Magalhães, T. Padilha, F. N. dos Santos, and M. Cunha, RpiTomato

dataset: Greenhouse tomatoes with different ripeness stages, Pascal VOC, Dataset, IN-

ESC TEC, Oct. 2021. DOI: 10.5281/ZENODO.5596363.

[C53] A. S. Aguiar and S. Magalhães, Grape bunch and vine trunk dataset for deep learn-

ing object detection, Pascal VOC, Dataset, INESC TEC, 2021. DOI: 10.5281/ZENODO.

5139598.

[C54] M. Almeida, S. C. Magalhães, and F. N. d. Santos, RG2C: Red grape chunk classification

dataset, 2023. DOI: 10.5281/ZENODO.8124484.

1.5.4 Document structure

The document is structured as follows.

Chapter 2 presents an extensive review of the literature pertaining to active perception

and perception strategies, drawing significantly on the works of Magalhães et al. [C41]. This

review adheres to the PRISMA5 guidelines for conducting systematic reviews. Given the spe-

cific research goals of this thesis, we have incorporated additional iterations into the system-

atic review process, in alignment with the methodologies detailed in [C42, C48].

The methodology and experimental design are detailed across two chapters. Chapter 3

focuses on solving the perception challenge of detecting and assessing fruits and trunks [C42,

C46, C47]. Through a series of experiments, we aim to enhance the capacity for perception

and the speed of inference, thereby approximating a solution suitable for near real-time ap-

plications [C43, C47]. Subsequently, chapter 4 advances the discussion to active perception

5Preferred reporting items for systematic reviews and meta-analyses
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strategies, examining algorithms that enable the camera to be actively positioned in strategic

locations for optimal object detection [C44].

The final chapter, chapter 5, provides a comprehensive evaluation of the findings and dis-

cussions. It also outlines potential future research directions aimed at refining the proposed

solution and facilitating its integration into actual prototypes.



Chapter 2

Literature review

This chapter performs a literature review to identify the main gaps in agricultural robots to

perform tasks like harvesting or monitoring, considering the active perception paradigm. Here, we

explore the context and the definition of active perception and frame its usability in the agricultural

context. For better contextualisation, we frame our research in the problem statement previously

made. The literature review mainly follows a systematic review protocol that was further improved

with additional and complementary research.

We published the results of this chapter in the literature review of several research articles.

However, the review article [C41] published in a scientific journal comprehends the main contri-

butions of this literature review.

2.1 Introduction

The significance of conducting a literature review at the outset of any research project

cannot be overstated, as highlighted by Baker [55]. This crucial step involves meticulously

searching for and analysing existing literature within the scope of the research topic to pin-

point pivotal contributions that underscore the research’s relevance and rigour. Moreover, a

well-executed literature review serves a dual purpose: it not only identifies existing research

gaps but also lays down a roadmap for new research directions aimed at bridging these gaps.

Applying stringent and relevant frameworks to guide the literature review process is indis-

pensable in this context. Such frameworks ensure that significant contributions are recog-

nised and acknowledged, thereby preventing needless duplication of known information.

Furthermore, they guarantee that the literature review is thoroughly documented, which,

in turn, facilitates future updates and enables the replication of research findings, a process

deemed critical for peer review [56].

Literature reviews often manifest as systematic reviews [57] or meta-analyses [58]. Among

the methodologies employed, the PRISMA statement [59] is widely recognised for conduct-

ing systematic reviews, especially within medical research domains. However, this method,

characterised by its linear and constrained approach, could constrain some disciplines such

as information systems, which are marked by rapid advancements and a proliferation of lit-

15



16 Literature review

erature [56]. Given the dynamic nature of these fields and the evolving taxonomies, Brocke et

al. [56] proposed an iterative, five-step framework specifically designed to conduct literature

reviews in information systems, ensuring both the reliability and comprehensiveness of the

reporting.

Despite the evident benefits associated with the methodology proposed by Brocke et al.

[56], incorporating more systematised approaches like PRISMA could enhance the validation

and replicability aspects of the literature review. Consequently, this literature review com-

menced with a systematic examination of the literature spanning from 2016 to September 21,

2021 [C41]. Subsequent rounds of review were conducted to update the literature base and to

delve deeper into the state-of-the-art.

An initial exploration of active perception was undertaken using the Scopus and ISI Web

of Science databases. This preliminary step aimed to ascertain the research interest and vali-

date the significance of developing active perception systems for open-field robotics, partic-

ularly in agricultural tasks such as harvesting or monitoring (Figures 2.1 and 2.2). Figure 2.1

delineates the trend of publications in active perception, a field that gained traction following

seminal works by Bajcsy [60] and others [61]. Despite a gradual increase in research output,

the complexity and computational demands associated with intelligent systems may have

impeded a rapid growth in literature. Additionally, the potential misclassification of relevant

contributions under different terminologies could further skew the actual volume of research

in this area.

Figure 2.1: Trend of publications on active perception in the Scopus and ISI Web of
Science databases using the key ("active perception" OR "active sensing" OR

"active vision").

Open-field robots, particularly those deployed in agricultural settings, form the core sub-

ject of this research. The primary application of these robots has been in harvesting tasks,

as depicted in Figure 2.2, which illustrates the growing interest in harvesting robots since the
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early 21st century. It is crucial to note that while numerous studies focus on harvesting robots,

their application is not limited to agriculture but extends to the medical field as well because

some similar terminology in the literature and further filtration of the results is demanded.

Figure 2.2: Trend of publications on harvesting robots in the Scopus and Web of Science
databases, using the key (harvest* AND robo*).

This review comprehensively examines the literature on harvesting robots within the agri-

cultural domain, noting a predominant reliance on passive perception systems, even when

incorporating active sensors such as LiDAR [62]. While many studies represent initial explo-

rations and detailed strategies for detecting fruits under natural conditions [C42, 63, 64], those

employing partially or fully active perception approaches [65–69] demonstrate enhanced re-

liability and intelligence in executing harvesting tasks.

Contrastingly, other analyses focus on detection and segmentation algorithms for fruit

identification in natural settings [70–72], yet overlook the assessment of active perception sys-

tems in the agricultural sector for fruit harvesting. This review extends beyond active percep-

tion strategies to evaluate prevailing trends concerning the most utilised sensors, detection

and segmentation techniques, and the acceleration of algorithms.

The methodology of this review adheres primarily to the PRISMA statement protocol [59],

with an additional in-depth examination of fruit detection and algorithm acceleration.

The structure of the subsequent sections is as follows. Section 2.2 delves into the funda-

mentals of active perception and aims at a comprehensive systematisation of the concept.

Section 2.3 discusses potential robotic architectures for agriculture and harvesting, informed

by the sensor technologies reviewed in Section 2.4. Further, Sections 2.5 and 2.6 explore the

nuances of active perception through the lenses of attentional and fixation mechanisms, as

well as information-seeking methodologies, respectively. Section 2.7 investigates methods to

expedite computationally demanding algorithms. Lastly, Section 2.8 synthesises the findings
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from the literature review. The appendix A details the research protocol behind this literature

review and some protocol alterations.

2.2 Active Perception

This current section endeavours to elucidate the concept of active perception, subse-

quently delving into its applications within the domain of fruit harvesting in agriculture.

Bajcsy [60] pioneered the formal discourse on active perception in 1988, proposing a

broadened perspective that transcends the mere employment of active sensors (such as Li-

DAR, radar, or sonar). Bajcsy [60] posited that passive sensors, for instance, cameras, can also

be harnessed in an active manner. Thus, she delineated active perception as a control chal-

lenge aimed at the data acquisition process, advocating for a control law that dynamically

adjusts the sensing apparatus in alignment with the objective or task at hand and the current

state of data interpretation. An integrative active perception framework, as per Bajcsy [60],

entails the inclusion of reasoning, decision-making, and control phases.

At the inception of this discourse, contributions to active sensing were scant, prompting

Bajcsy [60] to formalise this concept, foster further contributions, and delineate its distinc-

tions from active vision [61, 73–75].

Aloimonos et al. [61] contended that not all implementations of active vision qualify as

active perception systems. Active vision is characterised as a standalone, vision-centric sys-

tem capable solely of sensor movement [61], such as pan and tilt mechanisms (gaze control

mechanisms) that alter camera positions. If the camera’s movement is uninformed by envi-

ronmental awareness, it does not constitute an active sensing system [73]. Nonetheless, both

Bajcsy [60] and Aloimonos et al. [61] acknowledged the potential of active vision in augment-

ing active perception applications.

A comprehensive review conducted in 2011 assessed the advancements in active percep-

tion over the preceding 15 years, concluding that active perception epitomises the proactive

application of vision sensors for information retrieval and exploration within an environment

[76]. In this era, Chen et al. [76] refined the definition of active perception to entail the as-

tute determination of the visual sensor’s pose and configuration, necessitating the strategic

planning of multiple viewpoints to circumvent the visual sensors’ limited field of view. The

optimisation of viewpoint selection not only enhances scene reconstruction quality but also

ameliorates task completion time [76, 77].

Gualtieri et al. [77] further underscored the significance of the ‘where to look’ dilemma

within the active perception paradigm, advocating for a robotic system that intelligently se-

lects varying viewpoints during planning to enrich scene understanding.

Vision systems are often actively manipulated to track objects or adapt to environmen-

tal changes, such as adjusting the white balance or the camera sensor’s sensitivity. These

systems, being reactive, tailor their responses to predefined stimuli based on preconfigured

settings. Within the context of active perception, an active vision system is expected to intelli-
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gently respond to stimuli, selecting the optimal sensor configuration to enhance perception.

This may involve sensor repositioning for stimulus search and view alteration to augment

stimulus perception. To efficiently allocate robotic resources, stimuli are typically captured

and processed through attention mechanisms [78], which act as filters to prioritise sensory

signal processing. Thus, in an active vision system aimed at active perception, the visual sen-

sor is strategically moved to a purposeful visual perception pose.

The most recent formal definition of active perception was introduced by Bajcsy et al. [23],

who revisited and refined the original concept to reflect the advancements in the state-of-the-

art. They delineated the essential components requisite for any artificial agent, positing:

“An agent is an active perceiver if it knows why it wishes to sense, and then chooses

what to perceive, and determines how; when and where to achieve that percep-

tion.” [23]

According to Bajcsy et al. [23], for an artificial agent to achieve perception, it must ful-

fil a comprehensive set of criteria known as the perception pentad: why, what, how, when,

and where, as illustrated in Figure 2.3. The dimension of why pertains to the agent’s motive

– considering both its expectations and current state, the agent selects subsequent actions to

engender new states, which might include remaining stationary. This decision-making pro-

cess hinges on various forms of inductive reasoning. The what aspect focuses on identifying

specific segments of the environment (e.g., an object) that the agent aims to observe, a pro-

cess often termed as Scene Selection. The how component involves the sequences of actions

leading up to the observation, which can include mechanical alignment (positioning within

the appropriate sensory field), sensory alignment (adjustment of sensory mechanisms for op-

timal scene capture), and priming (tuning the perception system for effective interpretation

of sensory data). The when factor addresses the timing of expectations, determining their rel-

evance and duration. Lastly, the where component involves selecting the optimal viewpoint

and sensory modality for each specific expectation.

In essence, an active perception system is purposive and seeks information, as discussed

by [79]. It involves the dynamic control of sensory apparatus to align with specific tasks, which

may include maintaining a state of inactivity.

2.3 Harvesting platform architecture

Active perception systems, as detailed in section 2.2, should have cognitive algorithms.

These algorithms enable an intelligent selection of actions to control sensors and actuators

actively. This control aims for efficient information-seeking and data augmentation. In light

of these requirements and the essential functions for harvesting fruits, as discussed in the

preceding section, figure 2.4 introduces a universal framework for a mobile harvesting ma-

nipulator. This manipulator is mounted on a mobile platform as illustrated in figure 1.2.
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Figure 2.3: Fundamental elements of active perception systems, adapted from Bajcsy et al.

[23].
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Figure 2.4: Schematic of the active perception system framework designed for harvesting
grape bunches in vineyards.

A streamlined algorithm for the attention mechanism facilitates identifying the main at-

tributes of the region of interest, namely, the fruits. These attributes could include colour,

such as identifying red grape bunches or ripe tomatoes, or shape, such as detecting clus-

ters resembling circles – which are indicative of grape bunches or tomatoes. Upon locating

a potential fruit, the robot’s manipulator aligns with the region of interest. This alignment

provides a strategic viewpoint for observing the region of interest. Subsequently, a DaS al-

gorithm processes the acquired perspective data to confirm the region of interest’s validity.
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However, obstructions may limit the information available, making it challenging to deter-

mine the fruits’ shape and size, pinpoint their position, and identify the stem or the cutting

point on the stem. The viewpoint selection algorithm plays a crucial role in validating this

information and choosing the next viewpoint to observe the fruit. This process ensures the

collection of the most comprehensive and relevant data. These algorithms, essential for en-

hancing environmental data and swiftly selecting target areas, are fundamental for active per-

ception systems [78, 23]. Moreover, this framework can be extended to include algorithms for

tracking the region of interest up to the point of harvesting, encompassing motion planning

and control algorithms. The motion planning process within this framework comprises two

stages: an initial offline path planning algorithm is executed [80, 81], followed by an online

planning algorithm that refines the path with newly acquired data during execution [82].

2.4 Sensors

Besides the initial expectations set by Bajcsy [60] regarding sensor use in active perception,

recent research remains predominantly focused on the deployment of active vision systems

within this domain (see Figure 2.5 and [C41]). Specifically, these systems emphasise the active

manipulation of cameras to cognitively gather and analyse data concerning region of interest.

Nonetheless, there has been a noticeable increase in the incorporation of haptic, IR sensors,

and spectrometers (refer to Figure 2.5) to enrich environmental data [C41], particularly in

capturing tactile information such as material roughness and other intrinsic properties. Al-

though, it is important to note that the value of haptic feedback is primarily confined to the

immediate vicinity of the region of interest. This proximity allows for the correction and ver-

ification of the regions’s position, supplementing the camera’s visual data with tactile details

like roughness, as highlighted in studies by [83] and [84]. These enhancements are crucial for

precision tasks in contexts such as pruning or harvesting.

Regarding camera technology, RGB digital cameras remain the prevalent choice, as illus-

trated in Fig. 2.5, mainly due to the current research focus on vegetative stages in agriculture,

which often concentrates on fruit detection and segmentation. However, more sophisticated

approaches for fruit detection, segmentation, and localisation are employing RGB-D cameras

or stereo cameras, also known as binocular cameras. An interesting deviation is the use of IR

cameras for detecting peas, as noted by Tejada et al. [85]. IR cameras offer robustness against

various light sources but are sensitive to temperature fluctuations and require a dedicated

light source for optimal operation.

The integration of RGB cameras with time of light (ToF) or LiDAR sensors enhances the ca-

pability to detect and analyse objects effectively and in the 3D space, as illustrated in Fig. 2.5.

This combination is instrumental in developing cost-effective RGB-D sensors, which are piv-

otal for measuring distances between the sensor and the objects. Additionally, these sensor

combinations enable the creation of sophisticated systems that can evaluate fruits compre-

hensively. Specifically, LiDAR sensors have been utilised independently to identify apples



22 Literature review

on trees by leveraging the reflectance index to differentiate fruits from leaves and the back-

ground, as highlighted by [62].

Although haptic sensors are seldom used for fruit evaluation, emerging advancements

suggest a potential for future application. On the other hand, IR sensors are increasingly em-

ployed as proximity detectors for fruits, as noted in the studies [86–88]. Moreover, spectrom-

eters are not only useful for fruit detection but also play a crucial role in assessing fruit quality

and characteristics, thereby supporting selective harvesting efforts [69, 89, 90].

Figure 2.5 summarises the sensor types applied in fruit detection and analysis. This fig-

ure is a Venn diagram reporting the number of articles using a sensor type. The number of

papers is presented in an isolated manner, i.e., there are 110 articles using RGB sensors, 3 ar-

ticles using both RGB and RGB-D sensor, 1 article using stereo and monocular cameras, and

6 articles using both monocular cameras and LiDAR. So, this diagram reports, for instance,

a total of 120 articles using monocular cameras. From the diagram analysis, we conclude

that the literature often focuses on employing either single RGB cameras or RGB-D cameras.

Notably, when RGB-D sensors are utilised, there is a significant emphasis on performing 3D

localisation of fruits, enhancing the precision and efficiency of the detection process.
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Figure 2.5: Sensors used for fruit detection, segmentation, localisation, and assessment. The

2.5 Attention and Fixation Mechanisms

In their study, Balkenius and Hulth [78] delineated the concept of attention mechanisms

as pivotal for decision-making processes that filter and prioritise sensory signals for further

processing. They articulated that these mechanisms efficiently reduce the processing load by

focusing only on selected regions of interest. The study characterizss the attention mecha-

nism as a critical component in managing a robot’s actions, introducing three core principles

for attention-driven action control:

1. Attention as action;

2. Selection-for-action; and
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3. Deictic reference.

Attention as action posits that the act of directing attention towards a target is, in itself,

an action rather than merely a precursor to sensory processing. This can also be described as

attentional shifting, which necessitates the selection of one or more targets for action – a con-

cept Balkenius and Hulth [78] also referred to as attentional fixation. Such fixation enables the

system to maintain focus on chosen stimuli while excluding new ones, thus facilitating sus-

tained monitoring of the attended stimuli. The identification of these stimuli is facilitated

by deictic references, which are cues (either internal, like a target’s dominant colour, or exter-

nal, such as sound or sudden movement) that allow for the perception of the target without

needing a comprehensive model of the object.

According to Balkenius and Hulth [78], attention mechanisms can operate under two con-

ditions: (i) bottom-up, focusing on how a region of interest appears within its surroundings;

and (ii) top-down, considering how a region of interest aligns with our objectives. An effec-

tive strategy for identifying regions of interest may involve a balanced combination of these

approaches, as suggested by Rasolzadeh et al. [91].

Recent studies on the implementation of attentional shifting for fruit detection using vi-

sual sensor present a balanced division between the use of DL and conventional CV tech-

niques, as indicated by Figure 2.6. This figure reports the results in a similar Venn diagram

architecture to the figure 2.5, so there are a total of 85 articles using DL algorithms, 76 articles

using CV algorithms, and 42 articles using ML models. While ML methods (e.g., SVM [92], par-

tial least square (PLS) [93] [69, 68], k-means [94, 95], and wavelet [96]) are increasingly cited

in the literature for fruit detection, they often complement traditional CV strategies, such as

colour feature adjustments or morphological operations. It is noteworthy that ML is seldom

employed in conjunction with DL models, but when it is, these algorithms aim to refine post-

processing through tasks like fruit segmentation using PLS, SVM, or k-means, branch detec-

tion [97], or as part of redundancy strategies [98].

While most CV and ML algorithms are associated with segmentation techniques that

nearly enable fruit harvesting, the boundary between attention mechanisms and segmenta-

tion becomes more distinct in DL approaches. DL, on high parallelisation features devices,

facilitates rapid image classification, object detection, or segmentation, making it ideal for

real-time applications. However, segmentation processes are generally resource-intensive

and require slowing down the operation. Among the DL architectures reviewed, object

detection models such as faster region-based convolutional neural network (Faster R-CNN),

YOLO, and single shot multi-box detector (SSD) are prevalent, with YOLO being the most

frequently used model, though Faster R-CNN is also gaining traction.

A common yet underexplored challenge in agricultural technology is the detection of

green tomatoes amidst their surrounding foliage. This difficulty arises due to the close colour

resemblance between the tomatoes and the plant’s canopy. A comparison conducted by

E Alam Siddiquee et al. [99] illustrates this issue well. They evaluated a ML approach known

as the “cascaded object detector” against a hybrid of traditional image processing techniques
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viewed literature

– namely ‘colour transformation’, ‘colour segmentation’, and ‘circular Hough transformation’

– in identifying ripe tomatoes. Their findings revealed that the ML method outperformed

conventional strategies with a 95 % better accuracy rate.

For the purpose of detecting and segmenting tomatoes within a plant, researchers typi-

cally focus on the plant canopy as the primary region of interest. Within this region, other

structures might obscure or overlap the fruits, complicating the detection and estimation

of their locations. These challenges are particularly pronounced during the early ripening

stages, where the colour similarity between the leaves and tomatoes is most significant. De-

spite these obstacles, most research in the field has historically focused on the later stages

of tomato maturation – when the fruits are red – using colour as a key distinguishing feature

[100, 101, 96, 102–106]. In attempting to differentiate fruits from their surroundings and the

background, which can be pretty complex at the crop level, various colour spaces including

HSI [102, 104], CIELAB [100, 101, 96], and RGB [102–105] have been utilised. Additionally,

combinations of mathematical morphology [107] and ML techniques have been employed to

address fruit detection in scenarios of occlusion and overlap [100–102, 104–106, 108–110, 96,

111, 112, 20].

In the context of greenhouse harvesting robots, several studies have made noteworthy

contributions. Yin et al. [100] used K-means clustering in the CIELAB colour space to seg-

ment ripe tomatoes, achieving an average task execution time of 10.14 s. Huang et al. [101]

applied the CIELAB colour space for segmenting and localising ripe tomatoes, employing bi-

level partition fuzzy logic entropy for fruit-background discrimination, though without eval-

uating the algorithm’s performance. Zhao et al. [96] developed a green-to-ripe tomato detec-

tion algorithm, extracting a* and L* components images from the L*a*b* and the luminance

of the quadrature-phase (YIQ) colour spaces. These were then merged at the pixel level us-

ing wavelet transformation, with an adaptive threshold algorithm applied to distinguish the

fruits from the background, achieving a 93 % detection rate.

Arefi et al. [102] developed an algorithm for ripe tomato recognition, leveraging a com-

bination of RGB, HSI, and YIQ colour spaces alongside image morphological characteristics.
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This approach achieved a notable accuracy of 96.36 % in greenhouse conditions with artificial

lighting. Feng et al. [103] introduced a harvesting robot for greenhouses designed to identify

and locate ripe tomatoes by transforming RGB images into the HSI colour model. This pro-

cedure was completed in 4 seconds, resulting in a harvesting success rate of 83.9 %. Similarly,

Zhang [104]utilised the conversion from RGB to HSI for ripe tomato detection, employing the

grey scale distribution of the H component and threshold methods for region segmentation,

and the Canny operator [113] for edge detection. However, their results were not quantified.

Furthermore, Benavides et al. [105]designed a CV system focusing on detecting ripe toma-

toes in greenhouse environments. The system primarily used the R component of RGB im-

ages and the Sobel operator [114] for fruit segmentation and edge detection, achieving a preci-

sion of 87.5 % for clustered tomatoes and 80.8 % for beef tomatoes. Malik et al. [106] proposed

a ripe tomato detection algorithm utilizing the HSV colour space and watershed segmenta-

tion method, which effectively separated clustered fruits with a precision of 81.6 %.

Additionally, Zhu et al. [108] explored ripe tomato detection in greenhouses by integrating

mathematical morphology with a Fuzzy C-Mean (FCM)-based method, though results were

not reported. Xiang et al. [109] tested an algorithm for ripe cluster tomato recognition, achiev-

ing 87.5 % detection rate at 500 mm and a reduced rate of 58.4 % within a range of 300 mm to

700 mm.

In the domain of ML, Yamamoto et al. [110] employed various techniques to identify dif-

ferent ripeness stages of tomatoes, highlighting an 88 % precision in their method, which in-

cluded pixel-based segmentation, blob-based correction, and X-means clustering for indi-

vidual fruit detection within clusters. Zhao et al. [115] utilised Haar-like features and the Ad-

aBoost classifier, complemented by colour analysis based on the average pixels value (APV),

achieving a 96 % detection rate with a 10 % false negative (FN) rate and 3.5 % undetected fruits.

Liu et al. [111]proposed a histogram of oriented gradients (HOG)-descriptor-based algorithm

with a SVM classifier, integrating a coarse-to-fine scanning method and false colour removal

(FCR) for false positives (FPs) elimination, culminating in a 94.41 % accuracy. Similarly, Wu et

al. [112] developed an algorithm for a greenhouse harvesting robot, combining multiple fea-

ture analyses with an relevance vector machine (RVM) classifier and a bi-layer classification

strategy, achieving a 94.90 % accuracy. Remarkably, Lili et al. [20] achieved a 99.3 % success

rate in detecting ripe tomatoes using the Otsu segmentation algorithm [116].

In recent studies, DL has garnered significant interest, as evidenced by numerous publica-

tions [117–122]. This surge in the interest is attributed to advancements in computational ca-

pabilities, including the advent of high-performance computers and edge computing devices,

such as TensorFlow processing units (TPUs), which are optimised for executing DL models.

Within the realm of DL for object detection, YOLO models have emerged as a prevalent archi-

tecture [123, 124], as highlighted in several works [117, 118]. Nonetheless, other convolutional

neural networks (CNNs) continue to be significant due to their precise output, despite their

extended inference time, which has led to the adaptation of SSD models to mitigate these

limitations [125]. These adaptations include the integration of additional layers to enhance
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network resolution and modifying output layers to streamline the network for specific class

detections or feature extractions.

Xu et al. [117] enhanced the YOLO v3 tiny method, achieving superior detection of ripe

tomatoes through backbone network improvements and image enhancement techniques, re-

sulting in an F1-score of 91.92 %, a 12 % increase over the standard YOLO v3 tiny method. Liu

et al. [118] developed the YOLOTomato model, utilising the YOLO v3 framework augmented

with a dense architecture for feature extraction and a novel bounding box, the C-box, to im-

prove detection in moderately occluded conditions to 94.58 %, a 4 % improvement over heav-

ily occluded conditions. Sun et al. [119] introduced a CNN-based detection approach utilising

feature pyramid network (FPN), which surpassed traditional Faster R-CNN models by increas-

ing detection rates from 90.7 % to 99.5 %. Mu et al. [120] demonstrated a model capable of de-

tecting green tomatoes in greenhouses under occlusive conditions, leveraging a pre-trained

Faster R-CNN framework with ResNet-101, fine-tuned for tomato detection on the common

objects in context (COCO) dataset, achieving an accuracy of 87.83 %.

The SSD model, a variant in DL for object detection, has been recognised for its potential

to significantly enhance fruit detection by efficiently performing object localisation and clas-

sification in a single step. This capability is underscored by Luna et al. [121], who employed

both region-based convolutional neural network (R-CNN) and SSD models in a CV system

designed to monitor tomato plant growth. The study found the SSD model to substantially

outperform the R-CNN model, achieving a fruit detection accuracy of 95.99 % compared to

the latter’s 19.48 %. Yuan et al. [122] further validated the efficacy of the SSD model in detect-

ing cherry tomatoes in varying ripeness stages within greenhouse environments. Through

experimentation with different base networks, including visual geometry group (VGG) 16,

MobileNet, and Inception v2. The Inception v2 network was identified as the most effective,

reaching a detection accuracy of 98.85 %.

This synthesis of current research (table 2.1) underscores the pivotal role of DL tech-

nologies, particularly YOLO and SSD models, in advancing agricultural practices through

enhanced accuracy and efficiency in fruit detection.

Table 2.1: Algorithms, methods and techniques proposed by different authors regarding
tomato detection at different ripeness levels (N/A—Not Available).

Method
Tomato

Ripeness
Accuracy

Inference

Time
Ref.

L*a*b* colour space and

K-means clustering
Ripe N/A 10.10 s [100]

L*a*b* colour space and

bi-level partition

fuzzy logic entropy

Ripe N/A N/A [101]

L*a*b colour space and

Threshold algorithm

Green,

intermediate

and ripe

93 % N/A [96]
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RGB, HSI, and YIQ colour spaces

and morphological characteristics
Ripe 96.36 % N/A [102]

RGB colour space images

into an HSI colour model
Ripe 83.9 % 4 s [103]

RGB colour space into an

HSI colour space, threshold method

and Canny operator

Ripe N/A N/A [104]

R component of the RGB images

and Sobel operator
Ripe

Clustered tomatoes: 87.5 %

Beef tomatoes: 80.8 %
N/A [105]

HSV colour space and

watershed segmentation method
Ripe 81.6 % N/A [106]

Mathematical morphology and

Fuzzy C-Means-based method
Ripe N/A N/A [108]

Mathematical morphology,

difference and iterative erosion course

Normalised colour

Ripe

50 cm–87.5 %

30 cm to 70 cm–58.4 %

N/A [109]

Pixel-based segmentation,

blob-based segmentation and

X-means clustering

Green,

intermediate

and ripe

88 % N/A [110]

Haar-like features of

grey-scale image and

AdaBoost classifier

Ripe 96 % N/A [115]

Histograms of oriented gradients

and SVM
Ripe 94.41 % N/A [111]

Analysis and selection of

multiple features, RVM and

bi-layer classification strategy

Ripe 94.90 % N/A [112]

Otsu segmentation algorithm Ripe 99.3 % N/A [20]

Improved YOLOv3-tiny method Ripe F1 = 91.92 % N/A [117]

YOLOv3 detection model to create

the proposed YOLOTomato model

Green,

intermediate

and Ripe

94.58 % N/A [118]

Feature pyramid network

Green,

intermediate

and ripe

99.5 % N/A [119]

Faster R-CNN structure with

the deep CNN ResNet-101
Green 87.83 % N/A [120]

Comparison: R-CNN vs. SSD

Green,

intermediate

and Ripe

R-CNN: 19.48 %

SSD: 95.99 %
N/A [121]

SSD-based algorithm used to train and

develop network models such as

VGG16, MobileNet, Inception v2

Green,

intermediate

and ripe

Best performance is

Inception V2 (98.85 %)
N/A [122]

The mechanisms of attentional shifting are comprehensive algorithms that enable the si-

multaneous detection of multiple regions of interest. Consequently, when various regions of

interest coexist, it becomes imperative to employ an additional fixation mechanism to narrow

down the hypotheses under consideration [126].
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In the context of strawberry greenhouses, [87, 127, 88] have applied fixation mechanisms

in a bottom-up manner. Due to construction limitations, the robot prioritises harvesting

strawberries from the lower regions before proceeding to those at higher levels. This strat-

egy ensures the complete harvesting of strawberries while preventing damage to the robot or

other fruits. Alternative methods include selecting the nearest fruit or opting for the region of

interest with the highest confidence level of being actual fruit [78]. These approaches appear

viable for harvesting various fruits, such as grapes or tomatoes. However, the prevalence of

occluded fruits makes the strategies of selecting the highest confidence region of interest or

the nearest fruit more effective and reliable.

Another viable fixation mechanism strategy is evaluating the fruit’s maturity stage. By as-

sessing the correct ripening stage of the target fruits, it is possible to reduce the number of

region of interest. Following this assessment, strategies similar to the ones mentioned pre-

viously can be employed to focus on a single target. To address the challenge of ripening

evaluation, researchers have developed methods based on colour feature analysis (Table 2.2)

and DL approaches (Table 2.3).

Colour is a predominant feature used in image segmentation, particularly for differenti-

ating ripe fruit from complex natural backgrounds, due to its distinct and consistent visual

properties that are largely independent of image size. However, the effectiveness of colour

segmentation may be compromised by issues such as varying lighting conditions or occlu-

sions. To mitigate these challenges, researchers utilise various colour spaces beyond the stan-

dard RGB, including HSV, HSI, CIELAB, among others, to extract colour information from the

target object, in this case, the fruit. Utilising one or multiple colour spaces, as demonstrated

by Feng et al. [103], enhances the detection accuracy of the intended object.

2.5.1 SSD and YOLO architecture

To enhance the comprehension of the DL models discussed in the previous review and

utilised throughout this PhD thesis, this section provides additional context on the DL models

employed for object detection and classification. The study primarily focused on two pivotal

families of one-stage detectors: the SSD and YOLO, alongside an examination of RetinaNet

as an advancement of SSD, incorporating a FPN.

SSD, YOLO and RetinaNet belong to the one-step detection framework [141], charac-

terised by a direct mapping between pixel values, bounding box coordinates, and class

probabilities. This approach contrasts with the Region Proposal-Based Frameworks, such

as Faster R-CNN, by offering significantly reduced inference times, enabling real-time

performance.

The architecture of SSD, as illustrated in Figure 2.7, is divided into two primary com-

ponents: feature extraction and object detection. The feature extraction component, or

the backbone, typically utilises a state-of-the-art classification model, such as VGG 16

[142], though alternatives like ResNet [143] or MobileNet [144] are also viable options. This
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Table 2.2: Results of different papers regarding tomato detection and classification through
colour-based models. (N/A =Not Available).

Task Method No. Ripeness Classes Results Reference

Detection
CIELAB and

K-means clustering
1 class Inference time 10.14 s [100]

Detection
CIELAB and

Bi-level partition fuzzy
logic entropy

1 class N/A [101]

Detection
RGB, HSV, and YIQ
and Morphological

characteristics
1 class Accuracy 96.36 % [102]

Detection
RGB colour space images
into a HIS colour model

1 class
Inference time 4 s
Accuracy 83.90%

[103]

Detection
RGB colour space into an

HIS colour space, threshold
method and Cany operator

1 class N/A [104]

Detection
R component of the RGB

images and Sobel operator
1 class

Accuracy
87.50 % (Clustered)

80.80 % (Beef)
[105]

Detection
HSV and Watershed

segmentation method
1 class Accuracy 81.60 % [106]

Detection
CIELAB and

Threshold algorithm
3 classes Accuracy 93 % [96]

Classification
Aggregated percent surface area

below certain Hue angles
6 classes Accuracy 77 % [128]

Classification HSV colour histogram matching 5 classes Accuracy 97.20 % [129]

Classification
K-Nearest Neighbour based on
GLCM and HSV colour space

5 classes Accuracy 100 % [130]

Classification
Fuzzy Rule-Based classification

based on RGB
6 classes Accuracy 94.29 % [131]

Classification YCbCr colour histogram 6 classes Accuracy 98 % [132]

Classification
Multiplication of V and Cb colour
channel using Otsu thresholding

6 classes
Mean Square

Error 3.14
[133]

backbone generates high-level feature maps from the input image. Additionally, SSD incor-

porates six extra feature maps, progressively decreasing in spatial dimensions, to facilitate

the detection of objects at various scales [145, 146].
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Figure 2.7: Scheme for the SSD architecture using VGG16 as the backbone. Adapted from ref.
[145].
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Table 2.3: Results of different papers regarding tomato detection and classification through
DL one-stage detection models. (N/D =Not Described).

Task DL Model
No. of Ripeness

Classes
Results Reference

Detection
SSD MobileNet, SSD Inception,

SSD ResNet, SSD ResNet 101
and YOLO v4 Tiny

2 classes
F1-Score 66.15 %

(SSD MobileNet v2)
[C42]

Detection
YOLO v4, SSD Inception v2,
SSDMobileNet v2 and SSD

ResNet 50
2 classes

F1-Score 61.16 %
(YOLO v4)

[C46]

Detection
SSD VGG16, SSD MobileNet

and SSD Inception V2
3 classes

Average Precision 98.85 %
(SSD Inception v2)

[122]

Detection Improved YOLOv3 N/D F1-Score 94.18 % [134]

Detection Improved YOLOv3 1 class
Mean Average

Precision 76.90 %
[135]

Detection YOLO-Tomato 1 class F1-Score 93.91 % [136]
Detection Improved YOLOv3 Tiny 1 class F1-Score 91.92 % [117]

Detection
YOLOv3, YOLOv3Tiny,

YOLOv4, and YOLOv4 Tiny
2 classes

F1-Score 66 %
(YOLOv4)

[137]

Detection Modified YOLO-Tomato models 2 classes
F1-Score 97.90 %

(YOLO-Tomato-C)
[138]

Detection
Faster-RCNN, PPN

SSD MobileNet v2, RetinaNet,
SSD Inception v2, YOLOv3

3 classes
Mean Average

Precision 74.51 %
(RetinaNet)

[139]

Classification CCN and YOLO model 3 classes
Average Accuracy
94.67 % (YOLO)

[140]

For object detection, SSD employs a set of predefined anchor boxes (Figure 2.8) with var-

ious aspect ratios and scales, thereby constraining the potential shapes of bounding boxes

[141]. A convolution layer predicts, for each anchor box and at each location on the feature

maps, the location offsets and confidence scores for each class. This layer is applied to the ad-

ditional feature maps and specific outputs of the backbone [145]. The fusion of predictions

from multiple feature maps, each with a different resolution, enables the detection of objects

of varying sizes.

loc: (cx, cy, w,h)
conf: (c1, c2, ..., cp)

Figure 2.8: Anchor box shapes used in the SSD architecture. Adapted from ref.[145].

To refine the detection results, non-maximum suppression (NMS) algorithm is applied

to retain only the highest-rated bounding boxes and reduce overlapping. Training involves a

weighted sum between localisation loss (e.g., smooth L1) and confidence loss (e.g., softmax).

To enhance the performance of SSD models is recommended to adopt several strategies
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tailored to the specific problem at hand. Firstly, selecting default anchors with appropriate

scales and aspect ratios can significantly influence model accuracy. Additionally, data aug-

mentation techniques should be employed to increase the diversity of training data, thereby

improving the model’s generalisation capability. Furthermore, implementing hard negative

mining can optimise the training process by focusing on difficult examples, thus refining the

model’s accuracy. However, it is noteworthy that SSD models generally exhibit lower perfor-

mance in detecting small objects, as these objects may not be represented across all feature

maps. To address this issue, enhancements such as employing more sophisticated feature

extractor backbones like ResNet, increasing input image resolution [141], or modifying the

feature map layers to better accommodate the objects’ sizes are recommended.

Similarly, YOLO models share a comparable architecture with SSD models, as discussed in

[124]. Both architectures utilise a strategy of distributing anchor boxes (or priors) across mul-

tiple scales of the artificial neural network (ANN) for object classification. Specifically, YOLO

models distribute priors across three scales, employing a logistic regression method to adjust

the corners of each prior for precise localisation. Unlike SSD, which may use various back-

bones for feature extraction, YOLO models predominantly rely on a Darknet-based architec-

ture for this purpose. Moreover, the loss function and backpropagation techniques employed

in YOLO models differ from those used in SSD, reflecting their unique training methodologies.

2.6 Viewpoint Selection and Fruits Segmentation

Trees naturally exhibit a behaviour that allows their fruits to develop hidden behind the

leaves. This adaptation protects the fruits from direct sunlight and adverse weather con-

ditions, preventing them from becoming burnt or damaged. Such positioning of the fruits

alongside the stem enhances their occlusion. To support the harvesting process, active per-

ception methods have been developed, including viewpoint selection algorithms. These al-

gorithms are designed to enhance the visibility of the fruit (the region of interest) and to assess

the sufficiency of the gathered information for effective harvesting. Furthermore, additional

segmentation strategies are essential for differentiating these regions of interest from the sur-

rounding background, facilitating their identification and extraction.

2.6.1 Region of interest Segmentation and Assessment

Before selecting an optimal viewpoint is crucial for the system to carefully consider its tar-

get, specifically addressing the question, ‘What should be perceived?”Furthermore, at each

selected viewpoint, the system ought to prioritise the collection of comprehensive informa-

tion from that perspective, focusing on data pertaining to fruits, peduncles, and any potential

obstacles in the vicinity.

The process of gathering detailed information on fruits is predominantly facilitated by

data segmentation algorithms. These algorithms, which are akin to detection algorithms, can
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employ conventional image and sensory data analysis techniques, such as region growing,

erosion, and dilation, alongside ML algorithms or those based on DL models. While the pri-

mary focus of this review is not to delve into the intricacies of fruit segmentation algorithms,

it is pertinent to mention some notable recent works in this area for reference.

The application of CV and ML techniques plays a significant role in fruit segmentation,

yielding impressive results. With the advent of state-of-the-art libraries, such as OpenCV

[147], implementing these techniques has become more straightforward. Common ap-

proaches include leveraging colour features and thresholds, as well as employing corner

and edge detectors like the Canny edge detector or Harris corner detection. However, these

methods often fall short in 3D spaces. In classical approaches, researchers have utilised

colour features and algorithms like k-means or SVM to cluster fruit pixels by colour or

voxelisation based on similar principles.

The adoption of DL models represents an emerging trend in the context of segmentation,

especially in 3D environments. The voluminous data and their inherent characteristics make

DL an appealing choice for implementation, as it can extract more accurate and diverse fea-

tures than traditional colour or shape-based methods. Popular DL models for segmentation

include mask region-based convolutional neural network (Mask R-CNN) and detection and

segmentation artificial neural network (DaSnet).

Among the publications reviewed, several have tackled the challenge of identifying pe-

duncles. [148–151, 105] have made noteworthy contributions in this area. Sa et al. [149] de-

veloped a robotic system for harvesting peppers in greenhouses, utilising SVM for identifying

the pepper’s peduncle within a point cloud representation of the environment, given its prox-

imity to the pepper. Yoshida et al. [150] constructed a directed acyclic graph from identified

tomatoes to characterise tomato bunches, employing this graph and voxelised images to de-

termine the precise cutting point location on the peduncle. Benavides et al. [105] employed

a geometric and trigonometric approach to ascertain the stem’s location based on the de-

tected tomatoes’ pose and size. Lehnert et al. [151] implemented a lightweight agricultural

deep CNN to segment the stem’s position within a pre-determined regions of interest.

As highlighted in section 2.4, the enhancement of environmental understanding is not

limited to identifying the most informative region of interest but also extends to utilising ad-

ditional sensory equipment and algorithms for assessing fruit quality. Wendel et al. [68], Zhao

et al. [69], and Martins et al. [90] have employed spectrometry to evaluate fruit quality, paving

the way for future investigations into predicting potential disease infections. Moreover, visual

data can be complemented by algorithms dedicated to selective harvesting, which facilitate

ripeness classification [152–154], ensuring fruits are harvested at the optimal stage of readi-

ness.
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2.6.2 Viewpoint selection

Bajcsy et al. [23]delineated the where component within the context of the pentuple (why,

what, how, when, and where) questions, segmenting it into two distinct elements: Agent pose

and sensor pose. The term ‘agent pose’ pertains to the strategic control and selection of the

agent’s (e.g., a robot or manipulator) optimal position, facilitating the acquisition of supple-

mentary information on the targeted region of interest. Conversely, the ‘sensor pose’ element

encompasses the proactive adjustment of the sensor’s orientation (notably in devices with

pan and tilt capabilities) and intrinsic settings (such as focal length, zoom, and white bal-

ance) to optimally capture the region of interest. The process of selecting a focal point, or

the region of interest, is informed by the fixation mechanism (refer to section 2.5), while the

management of viewpoint alterations is supported by attentional mechanisms, ensuring the

object remains within tracking range without being lost.

Recent literature reviews have shown that most studies on fruit detection have utilised

RGB-D sensors [C49, 155], as illustrated in Figure 2.5. Nonetheless, these studies were pre-

dominantly conducted under controlled lighting conditions to ensure the sensors’ optimal

performance [155]. RGB-D sensors are prone to malfunctions in open-field environments

due to reflections or intense illumination [155–157]. Thus, employing auxiliary algorithms

and alternative technologies is essential to mitigate the effects of lighting.

One solution to this challenge is the implementation of algorithms that enable depth per-

ception using monocular cameras. Recent advancements have focused on CNNs to deduce

this relative depth to the sensor [158–161]. Specifically, Mousavian et al. [161] utilized a CNN

to estimate the 3D pose of objects, introducing a MultiBin loss function to optimise the model.

Ma et al. [160, 159] developed custom CNNs, MonoPointNet and PatchNet, to generate 3D

images from monocular images and detect objects. Likewise, Haq et al. [158] proposed a

new regional proposal network (RPN) with geometric constraints for detecting 3D objects

using monocular cameras, showing performance comparable to [160, 159]. Van and Do [162]

adopted a chessboard background and a regression-based CNN for estimating the 3D pose of

irregular objects using cuboids, although the reliance on a chessboard background limits the

model’s applicability in unstructured environments.

Other studies have explored the use of auxiliary sensors, like LiDARs or ToF, to create 3D

scenes or for depth estimation [163]. However, high-resolution and quality LiDARs are expen-

sive and add complexity to the operation of robotic manipulators. Therefore the observation

of the objects through multiple perspectives can be an approachable solution. Perception

for manipulation is often achieved through eye-in-hand techniques, with most manipulators

capable of utilising either monocular or RGB-D cameras. Employing monocular cameras al-

lows the manipulator to perceive the position of objects from multiple perspectives and esti-

mate their pose. Approaches based on ML or statistics, such as [158–161], have been explored,

though statistical approaches offer more analytical solutions with predictable outcomes.

In the realm of agricultural issues, the literature presents a scant exploration of active
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viewpoint selection’s contributions. Nonetheless, several studies pertinent to industrial and

domestic spheres, as cited [164–166], may offer valuable insights for agricultural applications.

Within the agricultural domain, notable efforts include Sa et al. [149], who devised a scanning

strategy to enhance the visibility of peppers for harvesting purposes, enabling a clearer under-

standing of the fruit and peduncle positioning via a custom-designed gripper. Furthermore,

Barth et al. [167] implemented a visual servoing strategy to maximise information acquisition

about the plant through a comprehensive scan prior to initiating harvesting commands. Al-

though this method ensures a complete plant model, it is marked by its time-intensive and

computationally demanding nature. Jun et al. [67] employed a passive 3D perception ap-

proach for tomato harvesting, where detected tomatoes are approximated as boxes to com-

pute their tool centre point (TCP). A hand-eye coordination scheme facilitates the gripper’s

navigation towards the fruit, underscoring the critical role of stem location estimation in suc-

cessful real-world harvesting. The author also posits that reinforcement learning could fur-

ther refine the robot’s navigational accuracy. Visual servoing techniques, as employed by nu-

merous researchers [168, 86, 169–171, 85, 167, 172, 173], primarily leverage current scene in-

formation to guide robotic actions.

Researchers such as Lehnert et al. [151], Arad et al. [35], and Wu et al. [174] have demon-

strated the utility of employing at least two viewpoints to ensure comprehensive fruit observa-

tion. Ramon Soria et al. [175] developed an authentic viewpoint selection system, predicated

on minimising an objective function designed to maximise the distance from the history of

past poses, thereby ensuring effective convergence of the mapping process [175]. Although

the approach proposed by Ramon Soria et al. bears similarity to the framework discussed

herein (see fig. 2.4), it diverges by not accounting for the necessity of attentional systems

for preliminary fruit detection, presupposing sensor alignment with the fruits. Moreover, in-

stead of restricting focus to a singular region of interest, the methodology encompasses initial

comprehensive scene modelling followed by fruit selection for harvesting, necessitating so-

phisticated recovery and tracking systems to monitor harvested fruits and locate all detected

and modelled fruits. Implementing viewpoint selection for fruit harvesting and assessment

presents more significant challenges than visual servoing, especially concerning dynamic

viewpoint computations [65, 66, 176]. Nevertheless, it garners interest in scholarly literature

due to its potential to capture multiple fruit perspectives, thereby facilitating the assessment

of various fruit properties, including maturity classification [154]. Sarabu et al. [177] details

a harvesting strategy employing a dual-arm robot and a multi-viewpoint approach, where

one arm is tasked with fruit detection and assessment from multiple viewpoints. Upon fruit

detection and selection, this arm chooses an alternate viewpoint for the same or another pre-

viously detected fruit and relays the location and harvesting strategy to the second arm for

execution.

Probabilistic algorithms, capable of accurately estimating objects’ poses, have also been

investigated. Algorithms such as Bayesian Histogram Filters have been applied in robotics for

localisation and navigation [178–180] and have shown potential in identifying and localising
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various objects. For instance, Sarmento et al. [181] applied region histogram filters to detect

people, animals, and other obstacles in ultrawideband scenes to avoid collisions and follow

people. Similarly, Engin and Isler [182] utilised this algorithm for object localisation. Már-

ton et al. [183] complemented a state-of-the-art position estimator with a histogram filter to

accurately estimate an object’s orientation.

In the domain of robotic agricultural tasks, significant advancements have been made

towards enhancing the efficiency of environmental perception. Lehnert et al.’s [184]method-

ology, though not directly hinging on the concept of viewpoint selection strategy, introduces

the 3D move to see (3DMTS) technique, which facilitates the continuous gathering of envi-

ronmental data. This approach is characterised by constructing a bespoke matrix of cameras

designed to capture the scene from multiple angles simultaneously. Each camera’s output is

individually assessed for quality, and based on these evaluations, the manipulator navigates

through the gradient of an objective function that consolidates the ratings of all cameras.

Expanding upon this framework, Zapotezny-Anderson and Lehnert [170] unveiled an en-

hanced iteration of the 3DMTS algorithm, termed deep 3D move to see (Deep 3DMTS). This

variant aims to augment the visibility of obscured fruits by applying DL techniques, repre-

senting a significant leap forward in the field.

In a parallel vein, Kurtser and Edan [82] delivers groundbreaking work by proposing a

planning algorithm that refines both the harvest and fruit detection processes. This algo-

rithm employs the travelling salesman problem to dynamically calculate the manipulator’s

path dynamically, optimising a cost function that balances data acquisition and harvesting

efficiency. The algorithm continuously updates the path to include new potential harvest

targets identified by the sensory system, employing an offline algorithm, like probabilitically

optimal rapidly exploring random tree (RRT⋆), to navigate between these points of interest.

Despite these innovations, the prevailing trend in the literature leans towards passive

perception strategies for agricultural applications. Nevertheless, the potential for adapting

these methodologies to active perception strategies is evident, as they embody the transi-

tional phase between the two paradigms. This is exemplified by the work of Barth et al. [167],

among others, who opted for comprehensive scene modelling despite the associated compu-

tational and temporal overheads. For instance, Kang et al. [185] showcase a detailed model of

apple trees for harvesting purposes, employing DL for fruit detection and segmentation. The

assumption that tomatoes can be approximated as spheres led to the use of the 3D spherical

Hough transform (3D-SHT) for determining the apples’ positions, with an octree structure

providing a 3D model of both the apples and trees. Building on this, Kang et al. [186] utilises

the PointNet model in conjunction with the octree framework to calculate the optimal grasp

pose for apple harvesting.

These studies collectively underscore the ongoing shift towards more dynamic and effi-

cient perception strategies in robotic agriculture, highlighting the interplay between innova-

tive algorithmic approaches and practical implementation challenges.
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2.7 Algorithms acceleration

The advent of AI, along with the ongoing generation of vast quantities of data, poses sig-

nificant computational challenges. Traditional central processing units (CPUs) alone are in-

sufficient for running cutting-edge AI algorithms or processing the extensive data produced

by various sensors. Leading processing technology corporations, including NVIDIA, AMD, In-

tel, and ARM, have meticulously examined these new requirements. These companies are at

the forefront, enhancing technology to provide efficient and adaptable processing solutions.

Heterogeneous computing is defined as the integration of diverse processor systems

to address a specific scientific computing challenge. Such platforms consist of a variety of

computational units and technologies, including multi-core CPUs, graphics processing units

(GPUs), and field programmable gate arrays (FPGAs). These components offer the necessary

flexibility and adaptability for a broad spectrum of application domains [187]. Utilising these

computational units can significantly boost the overall system efficiency and decrease power

consumption by parallelising tasks that demand extensive CPU resources over prolonged

periods.

Accelerators, such as GPUs and FPGAs, are designed for massively parallel processing, fa-

cilitating the acceleration of parallelisable code segments. The integration of CPUs with GPUs

and FPGAs enhances algorithm execution efficiency by allocating different computational

tasks to specialised processing units. GPUs are specifically optimised for conducting matrix

multiplications in parallel, a critical operation in video processing and computer graphics.

However, GPUs also present certain limitations, including high power consumption and ar-

chitectural constraints [188]. CNNs are inherently parallel but are not ideally suited for ma-

trix representation, as each neuron represents a node executing a series of sequential mathe-

matical operations. Although GPUs are highly optimised for parallel tasks, their architecture

is fundamentally inspired by CPUs. Application-specific integrated circuits (ASICs) are cus-

tomised designs of FPGAs, aimed at optimising and specifying operation executions. ASICs

are more compact and, when designed for processing CNN algorithms, can match the speed

of FPGAs. ASICs can be engineered to operate as standalone devices or be integrated with

external systems.

In DL applied to visual problems, CNNs are the predominant type of ANNs. The architec-

ture of these networks primarily comprises sequential convolutional layers trained to extract

pertinent features from images. CNNs are commonly used for classification, object detec-

tion, and segmentation problems. Within the realm of object detection, the most prevalent

CNN architectures include SSD [145], Faster R-CNN [189], and YOLO [190, 124]. While Faster

R-CNN offers the highest precision in object detection, its two-stage processing approach re-

sults in slower inference times. Conversely, SSD and YOLO are single-shot architectures, pro-

cessing the image once using feature maps to reposition object bounding boxes and perform

classification. Recent studies have explored single-shot architectures for detecting fruits and

other objects in open-field environments [C42, C49, 191–194], with YOLO models being par-
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ticularly common due to their fast processing speeds that approach real-time performance on

standard computing hardware [192], without significantly compromising performance met-

rics compared to other ANNs [C42]. However, challenges in detecting certain objects may ne-

cessitate larger and more capable CNN architectures. Transformers are emerging as a promis-

ing DL architecture for object detection, showing successful outcomes [193]. Despite this,

many studies benchmark their findings against high-power, consumption-intensive hard-

ware, which is not ideal for embedded or robotics applications [C42][191].

To address the limitations associated with real-time classification and power consump-

tion, several researchers have focused on developing compact and efficient DL architectures.

Notable examples include Tiny-YOLO [190, 124], YOLACT [195], and other innovative

architectures [196, 144, 145]. These architectures are designed for implementation on

cost-effective GPUs or even CPUs. In parallel, there is a growing interest in low-power, effi-

cient devices capable of running parallelisable deep neural networks [197], often embodied

in embedded devices. These devices span a range of types and architectures, including

GPUs, FPGAs, and ASICs, with Coral TPUs and Intel neural compute sticks (NCSs) being

notable examples. Another prevalent method among researchers for enhancing DL model

efficiency is quantisation [198]. Typically, ANNs are trained using FP321 precision. However,

optimisation algorithms, being iterative, tend to converge on high-resolution values that

are computationally intensive and often unnecessary for classification tasks. Quantisation

reduces the ANN’s resolution to INT82 by rescaling FP32 weights, which can improve

inference time and, in some cases, accuracy. Combining these strategies can yield highly

efficient DL models capable of processing images at thousands of FPS.

Research has particularly emphasised embedding GPUs from the NVIDIA Jetson fam-

ily, including models like NVIDIA Jetson Nano, NVIDIA Jetson TX2, and NVIDIA Jetson AGX

Xavier. Zhao et al. [199] benchmarked two DL models, Tiny-YOLO and DNET, on NVIDIA Jet-

son TX2 and NVIDIA GTX Titan X, observing a minor accuracy drop (about 1 %) during the

quantisation process for the NVIDIA Jetson TX2. Notably, the inference speed was approx-

imately ten times slower on the NVIDIA Jetson TX2 (achieving 18 FPS) compared to more

powerful GPUs, but it consumed 20 times less power, only about 8 W. Other studies, such as

those by Suzen et al. [200], Chiu et al. [201], Rahmaniar and Hernawan [202], and Martinez

et al. [203], have also evaluated the efficiency of DL models across NVIDIA Jetson embed-

ded boards. The NVIDIA Jetson AGX Xavier emerged as the fastest but also the most power-

intensive board. Conversely, the NVIDIA Jetson Nano was identified as less power-consuming

but slower. The most frequently benchmarked DL models are from the SSD MobileNet and

YOLO families, known for their smaller size, fewer convolution layers, and reduced feature

retention. Martinez et al. [203] reported running YOLACT at 66 FPS on an NVIDIA Jetson AGX

Xavier and at 16 FPS on an NVIDIA Jetson TX2, highlighting the significant hardware advance-

ments in the latest NVIDIA Jetson board. Chiu et al. [201] and Rahmaniar and Hernawan [202]

1Single-precision floating-point
28-Bit integer
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found the NVIDIA Jetson TX2 to be the fastest among the three boards when benchmarking

SSD MobileNet v2, achieving 26 FPS. Suzen et al. [200] also included the Raspberry Pi4 in their

benchmarks, but it was deemed slow and inefficient.

Despite notable improvements in power consumption, Jetson GPUs have an architecture

similar to traditional NVIDIA GPUs, inheriting some limitations. As a result, researchers have

begun exploring the potential of FPGAs for efficiency gains. AMD-Xilinx FPGAs, especially

from the Zynq family, have been a focus. Venieris and Bouganis [204] and Chen et al. [205]

compared a Zynq FPGA against a GPU, with Venieris and Bouganis [204] showing that the

FPGA outperformed the NVIDIA Tegra X1 across multiple CNNs, achieving at least double

the speed. Chen et al. [205] benchmarked a Xilinx ZedBoard against a NVIDIA GTX 1080Ti

using the ImageNet dataset [206] and a ResNet-18 classifier. Through quantisation, they im-

proved the network’s accuracy and efficiency, running it at 20 FPS and consuming 100 times

less power (only about 2.58 W). Lin et al. [207] compared a quantised INT8 MobileNet classi-

fier on an FPGA’s deep learning processor unit (DPU) (the main core for processing DL mod-

els) against multiple GPUs, focusing on the AMD-Xilinx ZCU104, which executed the algo-

rithm at 376 FPS while consuming only 5 W. Zhao et al. [208] benchmarked an AMD-Xilinx

ZCU104 against an Amazon Cloud FPGA EC2, using an YOLO INT8. Both devices achieved

similar performance, with up to 13 FPS in the Penn Treebank dataset. Additionally, Jain et

al. [209] benchmarked multiple FPGAs using a Tiny-YOLO INT8, reaching inference speeds

between 12 FPS to 23 FPS on the AMD-Xilinx XC7Z035.

Researchers are actively exploring the use of specialised ASICs for executing ANNs, as

these components can offer advantages in terms of cost, size, and ease of integration with

other systems. Among the most notable ASICs are the Google Coral TPU and the Intel NCS.

In their study, Puchtler and Peinl [197] conducted benchmarks comparing the performance

of the Coral Edge TPU USB Accelerator and the Intel NCS 2 to that of an NVIDIA Jetson Nano

and a Raspberry Pi 4. Their experiments utilised a SSD MobileNet v2 INT8 model, finding

that the ASIC-based devices outperformed the others, with the Coral Edge TPU USB Accel-

erator achieving inference rates of 55 FPS and the Intel NCS 2 reaching 23 FPS. In contrast,

the Raspberry Pi 4 and the Jetson Nano demonstrated significantly lower framerates of 4 FPS

and 15.98 FPS, respectively. Notably, the study did not assess power consumption. Further

evaluations of the Coral Edge TPU USB Accelerator’s performance and efficiency have been

conducted by Aguiar et al. [C47] and Kovács et al. [210].

The quest to enhance the speed and accuracy of DL models to satisfy real-time opera-

tional requirements is ongoing. However, predominant research efforts tend to concentrate

on refining the architectural designs of these models rather than addressing their intrinsic

characteristics, such as their capacity for high parallelisation [190, 124, 195, 196, 144, 145].

Furthermore, many studies test their algorithms on high-performance computing platforms

that are not typically deployed in robotics and mobile applications [C42, C48]. While some

researchers have investigated the potential of embedding these models in devices [203, 201,

202, 204, 207, 208], there remains ambiguity regarding the most appropriate device types for
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specific applications.

2.8 Conclusion

This chapter conducts a comprehensive review of the scholarly literature on active

perception in agricultural harvesting robots. It aggregated findings from various scientific

databases and spaned a broad spectrum of topics within active perception, including fruit

detection and segmentation, assessment, the selection of multiple viewpoints, visual control,

and the acceleration of algorithms. The majority of the studies examined focus on fruit

detection utilising visual data datasets collected in agricultural settings.

Predominantly, research on fruit detection has been conducted using detection and seg-

mentation algorithms in 2D spaces. Nevertheless, the literature questions the efficacy of em-

ploying solely 2D sensors for successful harvesting. In practice, most studies utilising 2D sen-

sors for harvesting purposes supplement them with depth sensors such as LiDAR or ToF [211,

212]. Regarding algorithmic approaches, the literature shows an even distribution between

traditional CV strategies and DL models. Classical CV approaches, often combined with ML

strategies like SVM or k-means, offer predictability through planned visual feature extraction

and simpler analysis processes. However, these algorithms are slower due to their cascade

implementation, which is not typically parallelised. Conversely, DL models are gaining pop-

ularity for their expressiveness, ease of training and deployment, and high feature extracting

capability, albeit requiring significant computing resources (e.g., GPU, TPU, FPGA) and exten-

sive training periods. The outcomes of DL-based models are highly data-dependent, making

it challenging to discern the specific image features utilised for object prediction. Notably,

most studies prioritise success rates, often overlooking the speed performance of the detec-

tion algorithms.

In terms of direct application in harvesting robots, passive perception systems predom-

inate. However, a few studies have explored active perception systems, focusing predom-

inantly on visual servoing. The literature acknowledges the limitations of visual servoing,

particularly regarding observability and the assignment of intelligent capabilities to the har-

vesting system. Consequently, some researchers are adopting multiple viewpoint strategies

and dynamic viewpoint planning to perceive occluded fruits and cutting points better. The

integration of visual sensors and viewpoint planning not only enhances the robots’ capabil-

ities for selective harvesting but also improves maturity classification and disease detection.

These advancements represent the state-of-the-art and are typically developed within con-

trolled environments, such as laboratory testbeds or simulations.

Active perception in harvesting robots is emerging as a forward-looking direction in the

literature, underscored by the advantages of intelligent viewpoint selection for fruit assess-

ment. This approach enriches spatial information about the fruits, facilitating better harvest-

ing outcomes and enabling the estimation of intrinsic properties, such as ripening stages.

Consequently, the next steps for implementing active perception strategies in agricultural
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field robots should encompass the following:

• Developing efficient and intelligent solutions for data-seeking processes through view-

point selection techniques;

• Integrating haptic sensors with vision (or other perceptive) sensors for enhanced effec-

tiveness;

• Crafting smart strategies to identify the optimal grasping pose for harvesting or pruning,

minimising damage to the region of interest or the plant, and;

• Implementing active searching strategies to locate fruits or other regions of interest in

occluded areas, such as behind leaves, branches, or other fruits, while navigating ob-

stacles in the most promising areas of the plants.

Furthermore, several research gaps must be addressed to ensure a robust active percep-

tion system for fruit harvesting:

• Active and dynamic viewpoint selection;

• Assessment of fruit properties;

• Detection of cutting points, and;

• Compilation of a database on fruit harvesting procedures.

This review shows that fruit detection and segmentation in the 2D space is a well-explored

area. Future research should prioritise detection and segmentation in 3D spaces, identifica-

tion of occluded fruits, stems, and cutting points, intelligent viewpoint selection, and fruit

assessment for smart harvesting, including maturity and anomalies detection. Additionally,

accelerating algorithms remains a critical focus due to their computationally intensive nature

and the necessity for real-time application in robotics.

In this PhD thesis, we will explore the development and application of methodologies

aimed at enhancing active perception. This exploration will involve the deployment of algo-

rithms for detecting fruit, optimised for execution on dedicated hardware, followed by imple-

menting information-seeking strategies through multiple viewpoint selection.



Chapter 3

Fruit perception

In this chapter, we explore various leading-edge DL object detectors for identifying fruits and

other items within a cultivar environment, crucial for any robotic harvesting system. We investigate

the performance of different visual system-based models and evaluate several embedded devices

for running these computer vision models. Our findings demonstrate the efficiency of the selected

models and confirm that diverse devices are capable of near real-time object detection, fitting for

use in mobile robotic systems.

The current chapter also comprehends several studies published in scientific journals, namely

[C51, C43, C48, C50, C42, C53, C47, C54, C52, C46, 213].

This chapter adheres to the standard IMRaD1 format, delving into topics related to attentional

and fixation mechanisms, paving the way for active perception.

3.1 Introduction

Effective harvesting systems depend on advanced perception technologies to accurately

identify fruits and other items in agricultural environments. As discussed in chapter 1,

agricultural environments are typically unstructured, containing various objects placed

randomly. Furthermore, the objects of interest, namely fruits, can be at different stages of

physiological maturity, complicating their detection and identification.

In chapter 2, the literature presents several methods for reliably identifying fruits and

other items in these complex agricultural scenes. Initially, the focus was on traditional CV

techniques that utilise colour and other features. However, due to their superior ability to

recognise and categorise complex structures, DL and ML algorithms have become the pre-

ferred choice.

Despite the advantages of DL models, their use is not without challenges. Their com-

plex, sizable architectures demand significant computing resources, necessitating powerful

devices for timely image processing or risking slow performance on standard devices. In re-

sponse, major tech companies have developed specialised frameworks and devices, includ-

ing dedicated hardware and optimisation algorithms. These innovations aim to enable DL

1Introduction, materials and methods, results, and discussion
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models to operate in near real-time with reduced power consumption, making them more

suitable for robotic applications.

This chapter will evaluate various DL models for object detection to determine their ef-

fectiveness in fruit detection within cultivars. To support this analysis, we have created and

shared datasets on the European server, Zenodo [214]. Additionally, we will explore the ca-

pabilities and limitations of different embedded heterogeneous platforms, including AMD-

Xilinx FPGAs, Google Coral TPU, and NVIDIA Jetson GPUs, in processing DL models.

Because many fruits in different physiological stages can be detected simultaneously, we

also study two approaches to assess their ripening stages. Colour features and DL models

were benchmarked. Besides assessing their ripening stages, this proposed approach can also

work as a fixation mechanism, aiding in selecting the next selectable fruit.

Subsequent sections will provide detailed descriptions of the methodologies, results of the

proposed approaches, discussions, and conclusions. Additionally, the process for compiling

and constructing the various datasets will be outlined.

3.2 Materials and Methods

3.2.1 Datasets generation

As we will explore later in this study, contemporary datasets like the open images dataset

(OID) [215], ImageNet [206], and the COCO [216] are found to be inadequate for effectively

detecting fruits and other objects within agricultural settings. To address this gap, we have

compiled multiple datasets across various cultivar contexts, encompassing a diverse range of

fruits and objects. In the following sections, we will outline the methodologies employed in

assembling these datasets and the processes involved in their preparation.

3.2.1.1 AgRobTomato and RPiTomato datasets

To facilitate the development of a robot capable of harvesting tomatoes in greenhouses,

it’s critical that the robot can accurately detect the tomatoes. While there are several com-

monly used datasets for object detection, such as the COCO dataset [216], the OID [215], and

the ImageNet dataset [206], only the OID includes images of tomatoes. However, the tomato

images in these datasets do not represent the specific category we aim to identify: tomatoes

in their early physiological stages on the plants in the cultivars.

To address the shortfall of relevant tomato image data in existing datasets, we created

a new image dataset by collecting photographs of tomatoes from a greenhouse in Barrose-

las, Viana do Castelo, Portugal. The greenhouse, like others on the campus, features a layout

conducive to robotic navigation: six rows of tomato plants spaced 0.9 meters apart, with the

plants reaching a height of 1.10 meters (as illustrated in Figure 3.1). It’s important to note

that tomatoes that have fallen to the ground, indicating over-ripeness, are not suitable for

harvesting by the robot.
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Figure 3.1: Greenhouses’ entrance.

The mobile robot AgRob v16 was employed to capture images within greenhouses, en-

hancing the representativeness of the collected data. This robot is outfitted with a compre-

hensive suite of sensors typical for robotic operations. Hence, we gathered data under the

same conditions as a robot engaged in a standard harvesting operation. A human operator

manually navigated the robot through the greenhouse halls, during which the robot aggre-

gated data from its various sensors (cameras, IMU, LiDAR, etc.) into a ROSBag file. For this

dataset, only RGB images were pertinent and subsequently utilised. The robot traversed along

the crop row, maintaining a distance of 0.4 m to 0.6 m from the tomato plants.

Equipped with two stereo cameras, the AgRob v16 utilised the front camera primarily for

localising itself within the hall. For harvesting tomatoes, we implemented an eye-in-hand

strategy, enabling continuous refinement of the robotic arm’s position relative to the tomatoes

through active perception or gaze control mechanisms. So, the second stereo camera (ZED2)

was mounted on an anthropomorphic manipulator at the robot’s rear, which was kept in a

fixed position looking sideways towards the tomato plants throughout the data acquisition

phase. A Jetson Nano3 GPU connected to the ZED camera on the robotic arm managed the

image capture and processing. Subsequently, the GPU forwarded the images to the robot’s

onboard computer to integrate them with other collected data.

In summary, the robot recorded video images of the tomato plant wall, storing them in a

ROSBag file. This phase yielded a raw data set that required processing to become a usable

dataset.

DL models, categorised under supervised ML algorithms, necessitate training with an an-

notated dataset. In object detection, annotations typically include a bounding box detailing

2See Stereolabs Inc. “ZED.” (2020), [Online]. Available: https://www.stereolabs.com/zed/ (visited on
11/25/2020).

3See NVIDIA Corporation. “Jetson Nano developer kit.” (2020), [Online]. Available: https://developer.
nvidia.com/embedded/jetson-nano-developer-kit (visited on 08/05/2022).

https://www.stereolabs.com/zed/
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
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the object’s class, size, and position. Some formats, like the Pascal VOC [219] format, also

capture additional object characteristics, such as difficulty in detection, occlusion, or trun-

cation. For this project, we employed the Pascal VOC format for its simplicity, summarising

the annotations for each image in a single XML file. The additional features were omitted as

the TensorFlow1 Object Detection Pipeline, the framework used for training the DL models,

does not utilise these details.

Initially, we converted the continuous video of tomato images into individual sequen-

tial frames. To reduce redundancy among images in the dataset, a frame was captured every

three seconds (3 FPS), ensuring an overlapping ratio of about 60 %. This approach produced

a dataset comprising 297 images, each with a resolution of (1280×720)px.

All images were manually annotated using the CVAT4 [220] or LabelImg [221] tools, which

enhance the management of images and annotations and support collaborative annotation.

For this dataset, we focused exclusively on the ‘tomato’ class, disregarding the stage of

ripeness, due to the predominance of either reddish or green tomatoes in the dataset, as

shown in Figure 3.2.

(a) Green tomato (b) Reddish tomato (c) Red tomato

Figure 3.2: Tomatoes’ ripeness levels: (a) physiological or horticultural maturation; (b) early
phase of ripening; and (c) ripened tomato.

We aim to leverage SSD models [145] and the tiny variants of YOLO [124]models for the

prompt detection of tomato fruits online, utilising either standard GPU hardware or spe-

cialised computing devices. Our approach involves employing fine-tuning methods to ob-

tain the trained models. However, the pre-trained models available in the TensorFlow1 Model

Zoo are not capable of processing images at their full size, necessitating a preliminary step of

image rescaling. For instance, the pre-trained SSD MobileNet v2 model [146] is designed to

process images resized to (300×300)px by default. Consequently, we partition the original

images into (300×300)px segments, according to the procedure illustrated in Figure 3.3, util-

ising the pascal_voc_tools5 for this task. This segmentation strategy ensures a minimum

overlap of 20 % between adjacent images. By dividing full-sized images of (1280×720)px into

(300×300)px segments, we not only increase the size of our dataset to 5365 images but also

4Computer vision annotation tool
5See W. Tengfei. “Pascal VOC tools.” (Mar. 16, 2021), [Online]. Available: https://github.com/wang-

tf/pascal_voc_tools (visited on 09/08/2021).

https://github.com/wang-tf/pascal_voc_tools
https://github.com/wang-tf/pascal_voc_tools
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enhance the quality of the images used for training.

Figure 3.3: Images split into (300×300)px images with an overlapping ratio of 20 %. The dif-
ferent colours are only for reference and distinguishing the different images.

Several studies have shown that augmenting original images by applying various transfor-

mations can enhance the size and variability of datasets, thereby enriching them with new in-

formation [223, 224]. These transformations can include: (a) rotation; (b) translation; (c) scal-

ing; (d) hue modification; (e) saturation; (f) blur; (g) noise; (h) others, even combinations of

these transformations.

The diversity of transformations applied to images and their specific details are sum-

marised in Table 3.1. All transformations were implemented randomly to ensure increased

data variability. An example of how augmentation has been utilised is shown in Figure 3.4.

This process resulted in a dataset comprising 23021 images, summed in 61204 descriptions

of tomatoes.

For training, the dataset was split into two parts: one for training and the other for val-

idation. The training set consisted of 18417 images with 49100 annotations, whereas the

validation set included 4604 images with 12104 annotations. An external set of annotated

images, acquired under similar conditions but in a different row within the tomato green-

house, was used for model evaluation and testing. Initially, this set contained 250 full-sized

images ((1080×720)px). However, to align with our methodology, these were not augmented

but instead divided into smaller segments of (300×300)px, resulting in 2737 images.

The complete dataset contained 25758 images and has been made publicly available

through the INESC TEC Research Data Repository [C50].

Tomatoes are a type of fruit that grows over a continuous period, leading to their ongoing

harvesting based on their maturity stage.
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(a) Original (b) Rotation (c) Translation (d) Scaling

(e) Flip horizontally (f) Blurring (g) Noising (h) Combination 3

Figure 3.4: Example of augmentation applied to an image. (h) is the random combination of
3 of the other transformations.

Table 3.1: Transformations applied to the images of the split dataset for data augmentation
and the characteristics of those transformations.

Transformation Value

Rotation −60◦ to 60◦

Scaling 50 % to 150 %
Translation 0 % to 30 % left or right
Flip Image mirroring
Blur (Gaussian Filter) N (0,1 to 3)
Gaussian Noise N (0,0.03 ·255 to 0.07 ·255)
Combination3 Random combination of three of the

previous transformations with random values

Because of that, an additional set of tomato images was collected to evaluate the potential

of CV techniques in determining the fruits’ ripeness. These images were taken from a sepa-

rate greenhouse in Amorosa, Viana do Castelo, Portugal, on June 15th, 2021. A selection of

60 tomatoes at various stages of ripeness was made, and RGB images of each tomato were

captured from multiple angles. The photography equipment used included a Raspberry Pi 4

Model B6 equipped with 4 GB of random-access memory (RAM), and a Raspberry Pi High-

Quality Camera7, which features a 12.3ṀP sensor and a 7.9 mm diagonal image size. At-

6See Raspberry Pi, Ltd. “Raspberry Pi 4 model B.” (2021), [Online]. Available: https://www.raspberrypi.
com/products/raspberry-pi-4-model-b/ (visited on 08/15/2021).

7See Raspberry Pi, Ltd. “Raspberry Pi high-quality camera.” (2021), [Online]. Available: https://www.

raspberrypi.com/products/raspberry-pi-high-quality-camera/ (visited on 08/15/2021).

https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
https://www.raspberrypi.com/products/raspberry-pi-high-quality-camera/
https://www.raspberrypi.com/products/raspberry-pi-high-quality-camera/
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tached to this camera was a 6 mm (wide angle) CS-mount lens with a 3ṀP resolution (see

Figure 3.5b). In total, 258 images were captured, forming the basis of the RpiTomato Dataset

[C52]. These images were carefully framed to maximise the use of the image space, eliminat-

ing the need for image splitting.

Figure 3.5: AgRob v16 (a) and the Raspberry Pi High Quality camera (b) used for image col-
lection.

To assess the maturity levels of the fruits, our approach focuses exclusively on classifica-

tion strategies rather than regression techniques. For the purpose of categorising fruits by

their stages of ripeness, we have established four distinct classes. These classes are derived

from the colour chart for fresh tomatoes provided by the United States Department of Agri-

culture (USDA) [227], as illustrated in Figure 3.6.

To enhance and expand the RPiTomato Dataset, we integrated it with the Tomato Dataset,

selecting all images from the latter and excluding only the green tomato images from the RPiT-

omato Dataset. This strategy was implemented to maintain a balanced representation of im-

ages, given the ample number of green tomato images already present in the Tomato Dataset.

As a result, a total of 632 images were chosen for inclusion.

In a manner analogous to the approach used for the Tomato Dataset, as documented

in [C50], all images from both the Tomato and RPiTomato Datasets were manually anno-

tated. This was accomplished using the open-source annotation tool CVAT, where rectan-

gular bounding boxes were drawn to indicate the position and classify the ripeness of each

tomato into one of four stages: “unripe”, “breaking stage”, “reddish”, and “ripe”, as depicted in

Figure 3.6. The dataset was formatted in the Pascal VOC standard for consistency.

Due to the significant computational demands of high-resolution DL models, which are

inefficient processing full-sized images, and given their requirement for square image in-

puts, the original images from the Tomato Dataset were segmented into smaller frames of

(720×720)px. Initially, images from the RpiTomato Dataset were resized to (960×720)px and
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Figure 3.6: Classes defined according to the colour of tomato during ripening: Green (a)—
more than 90% of the surface is green; Turning (b)—10 to 30% of the surface is yellow; Light
Red (c)—between 60 to 90% of the surface is red; Red (d)—90 to 100% surface is red.

then split to achieve a uniform resolution of (720×720)px. This splitting operation doubled

the number of images from the Tomato Dataset, increasing the total to 1081 images. How-

ever, after discarding images without annotations resulting from the split, the final count was

adjusted to 1029 images.

The reprocessed dataset RPiTomato dataset created an updated AgRobTomato Dataset

[C51]. Further, it was divided into three sets: a training set (60 %), a validation set (20 %), and

a test set (20 %).

To artificially enhance the dataset and improve the model’s learning efficiency and per-

formance, data augmentation techniques were employed. These techniques were selectively

applied to the training and validation sets, incorporating variations that could realistically

occur during robotic harvesting operations. This approach, illustrated in Figure 3.7, aimed

to introduce a diversity of data to the model, enhancing its robustness and effectiveness in

real-world applications.

The data augmentation process resulted in a total of 7598 labelled images. Specifically,

the training set comprised 5543 images, the validation set included 1850 images, and the test

set consisted of 205 images.

Furthermore, the AgrobTomato Dataset [C51] and the RPiTomato Dataset [C52] have both

been made available to the public, each being released separately.
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Figure 3.7: Different types of transformations applied to the images of AgRobTomato + RPiT-
omato Dataset.

3.2.1.2 VineSet Dataset

To enhance the research scope of this PhD Thesis and align with ongoing projects at the

INESC TEC TRIBE laboratory, we developed an additional dataset named VineSet [C53]. Vi-

neSet comprises 428498 images with dimensions of (300×300)px. Each image in the dataset

has been manually labelled and sourced from a variety of cameras including stereo, high-

quality, and thermal imaging devices. VineSet features natural vineyard scenes categorised

into three distinct classes: vine trunks, bunches of berry-corn size grapes, and bunches of

berry-closed grapes. As illustrated in Figure 3.8, the dataset showcases diverse images from

these categories. VineSet is a comprehensive collection that combines the VineTrunk dataset

[228] – which focuses on vineyard trunks and utilises various visual data sources – with newly

acquired images of grape bunches at different stages of growth.

(a) (b) (c) (d) (e)

Figure 3.8: Sample of images in the dataset [C53] with the respective ground truth bounding
boxes in blue squares. (a) Thermal image of vines’ trunks; (b) image of vines’ trunks without
infra-red filter; (c) image of bunches of medium-size grapes; (d) image of bunches of corn-
size grapes; (e) image of vines’ trunks.

The dataset was divided into three segments: a training set (411360 images), a validation
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set (8569 images), and a test set (8569 images). To align the test set more closely with real-

world data, augmentation images were removed, leaving 1125 images in the test set.

This dataset expansion seeks to enhance the VineTrunk dataset’s visual diversity, focusing

on detecting grape bunches at various fruit growth stages. To capture these stages, numerous

data acquisition experiments were conducted with the AgRob v16 robot, documenting the

grape bunches’ development across different weeks. The robot traversed the same path in the

vineyard (Quinta da Aveleda, Portugal) multiple times, during different times of the day and

on separate days, to collect visual data that captures the fruits’ growth stages and accounts for

significant variations in lighting. Initially, the robot captured images of berry-corn size grapes,

which are small, light green berries that appear post-bloom, measuring approximately 5 mm.

Subsequent experiments focused on medium ripening stages, featuring berry-closed grapes

with a regular green color and diameters around 12 mm.

The robot was equipped with two RGB monocular cameras mounted on an anthropomor-

phic manipulator, calibrated to ensure a consistent view of the vine canopy. The cameras used

were the Raspberry Pi High-Quality Camera – Sony IMX477 and the OAK-D8 colour camera,

with its depth sensors deactivated.

The data collection was conducted in video format (H264), from which single images were

extracted and stored. The videos were sampled at 1 FPS, minimising excessive overlap and re-

dundancy between sequential images, targeting at least 60 % overlap, similar to the approach

for the Tomato Dataset. This process yielded 1929 original images, showcasing various fruit

growth stages.

The collected data remained unprocessed by rectification or calibration to ensure models

trained on this dataset would work with raw images.

For training supervised learning models, the data underwent a labelling process for object

detection, marking regions of interest with bounding boxes. This process used the CVAT soft-

ware for visual annotation, identifying berry-corn size grapes as tiny_grape_bunch and

berry-closed grapes as medium_grape_bunch, following the Pascal VOC challenge protocol

[219]. Samples of the annotated dataset for these classes are depicted in figures 3.8c and 3.8d.

To enhance data diversity and mitigate potential overfitting, the dataset was augmented

using five operations, including a double application of rotation operations. This adjustment

reflects the reality of camera vibrations and the natural variability in fruit orientations, except

for upside-down growth. Consequently, the augmented dataset expanded to 13503 images.

The final phase in the data generation process involved segmenting the images, in a sim-

ilar strategy to the AgRobTomato dataset. Our dataset comprises full high-definition (HD)

images, which exceed the input size limitations of the models available in the TensorFlow1

Model Zoo. Consequently, it is necessary to resize our images to (300×300)px. However, con-

sidering our images are full HD, resizing could result in the loss of significant features and

details. To mitigate this, we employed a strategy where the augmented data was divided into

8See OpenCV AI and Luxonis Holding corporation. “OpenCV AI kit: OAK-D.” (2023), [Online]. Available:
https://store.opencv.ai/products/oak-d (visited on 09/22/2023).

https://store.opencv.ai/products/oak-d
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Table 3.2: Description of the augmentation operations used to expand the original collection
of data.

Augmentation

Operation
Description

Rotation Rotate the image by 30◦ and −30◦.

Translation Translates the image by −30 % to 30 % on the x- and y-axis.

Scale Scale the image to a value of 50 % to 150 % of their original size.

Flipping Mirrors the image horizontally.

Multiply
Multiplies all pixels in an image with a random value sampled
once per image, which can be used to make images lighter or darker.

smaller sections, matching the network’s input dimensions. Additionally, to ensure no criti-

cal information was lost between these sections, we implemented an overlap of 30 % between

them, as illustrated in Figure 3.9.

Table 3.3: Number of annotated objects per class. The original dataset contains 1929 images
with two different classes. To increase the dataset size, several augmentation operations were
applied, increasing the number of images to 13503. Finally, the images were split, and the
final dataset was composed of 302252 images.

Class # of Objects # of Objects in Augmented Images # of Objects in Split Images

tiny_grape_bunch 2497 13393 25349

medium_grape_bunch 4292 25189 51272

The table 3.3 provides summary information about the number of labelled objects for

the newly added classes, namely, tiny_grape_bunch and medium_grape_bunch, at three

different stages of the dataset: original images, augmented images, and split images. After the

splitting process, the total number of images we obtained with dimensions of (300×300)px

was 302252.

This new dataset, after being collected and processed, has been merged with the

VineTrunk dataset [228]. The VineTrunk dataset was acquired and processed using a similar

protocol, so even though the visual data comes from different sources, all the images share

similar features and processing.

Furthermore, the VineSet dataset [C53] has been made publicly available.

3.2.1.3 Red grape chunk classification (RG2C) dataset

Research in the literature suggests that small-sized ANN operating on dedicated hard-

ware can significantly accelerate the inference process. To investigate this, the new dataset

red grape chunk classification (RG2C) was compiled. The RG2C dataset consists of image seg-

ments depicting bunches of red grapes in steep-slope vineyards, classified in a binary manner.
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Figure 3.9: Split of a collected image to a (300×300)px resolution. The original image with
a resolution of (1920×1080)px generated 40 split images considering an overlapping ratio of
20 %.

These images were captured using an RGB camera at Quinta do Seixo, Valença do Douro,

Portugal, in video format. Unlike previous datasets, an operator utilised a smartphone POCO

F2 PRO9 and manually navigated through the vineyards, recording video samples of the

canopy with mature grape bunches. All frames were captured as RGB images, allowing for

some sequential and repetitive images. At present, the dataset includes 1198 images, each

with a resolution of (1920×1080)px.

Subsequently, each image was divided into (32×32)px segments, as illustrated in Figure

3.10. This segmentation process, performed without overlap, yielded a total of 10782 images.

In line with previous studies, supervised learning techniques were applied. Here, a binary

classification method was used, classifying the entire image segment as either containing

grapes or not, rather than identifying individual grapes within a bounding box. The dataset

was organised in an Image Directory structure as shown in Figure 3.11.

The labelling process was conducted in two phases. Initially, a colour threshold technique

was used to sort images into their respective class folders (grape or no_grape), taking ad-

vantage of the distinct colour of the red grape bunches against the background. However,

some mislabelling occurred, necessitating a manual verification process to correct inaccu-

rately labelled images. An image was classified as belonging to the grape category if it con-

tained at least 25 % of a grape bunch or part thereof.

Finally, the dataset was split into three sets considering the acquisition sequence of the

9For details on the characteristics, see GSM Arena. “Xiaomi POCO F2 Pro.” (Apr. 24, 2024), [Online]. Available:
https://www.gsmarena.com/xiaomi_poco_f2_pro-10220.php (visited on 05/16/2024).

https://www.gsmarena.com/xiaomi_poco_f2_pro-10220.php
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Figure 3.10: Illustration of the image segmentation scheme for the RG2C dataset.

RG2C

train

grape

*.jpg

no_grape

*.jpg

validation

grape

*.jpg

no_grape

*.jpg

test

grape

*.jpg

no_grape

*.jpg

Figure 3.11: The image directory structure for the RG2C dataset.

images: train (60 %), validation (20 %), and test (20 %). The train set contains 6470 images,

the validation set 2156 images, and the test set 2156 images.
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The RG2C dataset [C54]was made publicly available.

3.2.2 Fruit detection models

In the chapter 2, various strategies for detecting fruits and other objects in images are re-

viewed. Initially, the focus was primarily on classical image analysis procedures and simpler

ML algorithms. However, with the advancement of technology and scientific knowledge, DL

has emerged as the state-of-the-art for image analysis and object detection. Consequently,

we explored several DL models using the Tomato Dataset [C50] for the case study. Addition-

ally, as part of a benchmark study, we compared the performance of networks trained on this

dataset with others trained on the OID, which, despite containing multiple classes, including

tomatoes, does not specifically focus on the agricultural context. Our goal is to evaluate their

effectiveness in identifying tomatoes in cultivar settings.

The leading frameworks for DL include TensorFlow [231], Darknet [123], and Py-

Torch [232], with TensorFlow being notably prominent for its scalability and support for a

wide range of ML algorithms, particularly DL. As an open-source platform developed by

Google, TensorFlow can operate across diverse applications and devices, either in centralised

or distributed systems.

During the current study’s model evaluation phase, only TensorFlow 1 provided partially

compatible tools for training and compiling models for use with the TPU. Therefore, we em-

ployed TensorFlow r1.15.0 for both training and inference, utilising Colab10 notebooks11.

These notebooks offer complimentary access to powerful GPUs and TPUs for training and

inferring DL models. Although the available GPUs could vary with each Colab session initia-

tion, the NVIDIA Tesla T4, featuring a video random-access memory (VRAM) of 12 GB and a

7.5 computation capability, consistently served as the allocated GPU throughout our sessions.

Training Pipeline for Object Detection

Original Images
[Data 1]

Training
 Images

Validation
Images

Test Images
Images

Groundtruth Bounding Boxes

Split images
(300 x 300)

Fine-tuning
(Transfer
Learning)

Model
evaluation

Trained Model

DL Model

Cross-validation
Full trained
DL Model

Inference
Pipeline

Test Metric
Computation

Data
Augmentation

Metrics
(F1-score)

Original Images
[Data 2]

Figure 3.12: Overview of the performed methods. Training and evaluation pipeline.

10Google Collaboratory
11See Google LLC. “Google Colaboratory.” (2023), [Online]. Available: http://colab.research.google.

com (visited on 09/19/2023).

http://colab.research.google.com
http://colab.research.google.com
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For benchmarking purposes, we evaluated four pre-trained SSD models from the Tensor-

Flow database12, as specified in Table 3.4: SSD MobileNet v2, SSD Inception v2, SSD ResNet

50, and SSD ResNet 101, in addition to the YOLOv4 Tiny model. The first three SSD models

and the YOLOv4 Tiny were pre-trained on the COCO dataset, while the SSD ResNet 101 was

pre-trained on the OID. We fine-tuned these pre-trained models on the Tomato Dataset [C50],

over the strategy detailed in Figure 3.12, adhering to the default settings of the models’ pre-

training pipelines, but adjusted the batch size to suit the capabilities of the available GPU, as

detailed in Table 3.5. All training sessions were conducted over 50000 steps, with evaluations

every 50 steps to ensure no more than 50000 steps were necessary for convergence to the op-

timal solution in the solution space. In some instances, models achieved convergence after

just 30000 steps. This frequent evaluation helped us monitor training progress and prevent

overfitting, which was not observed in any of the trained networks.

Table 3.4: Model location in TensorFlow and Darknet databases. All SSD models are in the
TensorFlow Models database athttp://download.tensorflow.org/models/object_
detection/<filename>. YOLOv4 Tiny is in the Darknet database at https://github.
com/AlexeyAB/darknet/releases/download/<filename>.

SSD Model File Name

SSD MobileNet v2 ssd_mobilenet_v2_coco_2018_03_29.tar.gz
SSD Inception v2 ssd_inception_v2_coco_2018_01_28.tar.gz
SSD ResNet 50 ssd_resnet50_v1_fpn_shared_box_predictor_640x640_coco14_sync_

2018_07_03.tar.gz
SSD ResNet 101 ssd_resnet101_v1_fpn_shared_box_predictor_oid_512x512_sync_

2019_01_20.tar.gz
YOLOv4 Tiny darknet_yolo_v4_pre/yolov4-tiny.conv.29
YOLOv4 darknet_yolo_v3_optimal/yolov4.weights

YOLO v4 and YOLO v4 Tiny are not available for the TensorFlow framework, but they are

available for the Darknet framework. So, despite, at the time, they cannot be deployed for

TPU, they are referenced in the literature and have aided in establishing our baseline results.

The YOLO v4 Tiny model learned more quickly, requiring only 2500 steps for the training ses-

sion. Darknet did not offer any available validation sessions, so it was not considered.

In this experiment, our goal was to evaluate the ability of various DL models to detect

tomato fruits. We trained the models SSD MobileNet v2, SSD Inception v2, SSD ResNet 50, and

YOLO v4 twice for comparison: first on a specially gathered agricultural dataset of tomatoes

[C50], and second on a subset of the OID.

The experiment aimed to assess the performance of these DL models in detecting tomato

fruits. However, initially, the models outputted all detected objects without considering the

detection confidence. Thus, a crucial part of our training pipeline involved adjusting the con-

12See TensorFlow. “TensorFlow 1 detection model zoo.” (Oct. 14, 2021), [Online]. Available: https://github.
com/tensorflow/models/blob/master/research/object_detection/g3doc/tf1_detection_

zoo.md (visited on 09/19/2023).

http://download.tensorflow.org/models/object_detection/
http://download.tensorflow.org/models/object_detection/
https://github.com/AlexeyAB/darknet/releases/download/
https://github.com/AlexeyAB/darknet/releases/download/
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf1_detection_zoo.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf1_detection_zoo.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf1_detection_zoo.md


56 Fruit perception

Table 3.5: Training batch size for each model.

SSD Model Batch Size

SSD MobileNet v2 24
SSD Inception v2 32

SSD ResNet 50 8
SSD ResNet 101 8

YOLOv4 Tiny 64
YOLOv4 64

fidence rate -— a value indicating the model’s certainty in its predictions. A confidence rate

of 50 % means the network is 50 % sure of its detected or classified object. Higher confidence

rates generally indicate more robust ANN performance, though lower rates can still yield true

positives. Optimising this confidence score is vital for enhancing network efficiency. We em-

ployed a cross-validation technique to tune this hyper-parameter. On the validation set, after

removing all augmentations, we computed the F1 score for confidence thresholds ranging

from 0 % to 100 % in 1 % increments. A confidence threshold includes all rates greater than or

equal to it. The threshold that optimised the F1 score was selected for the model’s standard

operation.

SSD MobileNet v1 The SSD MobileNet v1 is a popular model among the state-of-the-art

models that are designed to run on low-power embedded devices. This model, introduced by

Howard et al. [196], uses depth-wise separable convolutions, which is achieved by factorising

standard convolutions into depth-wise and 1×1 convolutions that are then combined.

The input of this CNN is a tensor with shape Df ×Df ×M , where Df represents the input

channel spatial width and height, and M is the input depth. After the convolution, a feature

map of shape Df ×Df ×N is obtained, where N is the output depth.

The model contains two hyper-parameters that can be tuned to optimise the CNN perfor-

mance. The first hyper-parameter has a multiplierα, which can be used to uniformly decrease

the model size at each layer by a factor of α2. This is performed by multiplying the number of

both input and output channels by a constant. The second hyper-parameter, resolution mul-

tiplier ρ, is used to reduce the computational cost of the model by a factor of ρ2 by changing

the input image resolution accordingly. Both parameters can be used simultaneously to bal-

ance the performance and inference time of the model.

SSD Inception v2 The approach of Inception was first developed by Szegedy et al. [235]. The

design of the model was based on the assumption that objects in different images can have

different sizes, making it difficult to choose the right kernel size for the CNN. To overcome

this, the authors created the model with three convolutional filter sizes: 1×1, 3×3, and 5×5.

The results from these operations were then combined, resulting in the network’s output.

To reduce the computational complexity of the original version, SSD Inception v2 [236]
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was developed. This was achieved using factorisation over the convolution operations. For

example, a 5×5 convolution was factorized into two 3×3 convolutions, which improved run-

time performance. Similarly, a m ×m convolution can be factorised into a combination of

1×m and m×1 convolutions.

SSD ResNet Residual Networks were introduced by He et al. [143]. The authors base their

work on plain networks, drawing inspiration from principles like VGG [142]. Plain networks

essentially consist of sequential convolution filters that process the data. The base plain net-

work’s head is composed of an average pooling layer, followed by a 1000-unit dense layer using

the softmax activation function.

For the residual network, He et al. [143] introduced a shortcut in the plain network be-

tween each pair of convolution layers, creating its residual counterpart. The number associ-

ated with the identification of the residual network, such as ResNet 50 or ResNet 101, indicates

the depth of the networks, i.e., the number of convolution layers in the network.

YOLO v4 YOLO as introduced by [190], stands as the forefront technology in one-stage deep

neural networks for object detection, adopting a principle similar to SSDs. The evolution to

YOLO v4 is marked by the work of [237], which retains the architectural essence of its pre-

decessors, notably YOLO v3 as documented by [124]. It is built upon a Darknet backbone,

specifically, CSPDarknet53 [238] and integrates both an spatial pyramid pooling (SPP) layer,

as per [239], and a path aggregation network (PANet) structure from [240] in its neck. The

head mechanism continues to mirror that of YOLO v3, maintaining a consistent approach to

object detection.

More detailed information of the overall architecture of YOLO models is available in the

section 2.5.1.

The present protocol aims to investigate the architecture of certain ANNs for fruit detec-

tion in natural contexts. It is worth noting that these studies were previously conducted using

high-performance devices, which are not ideal for mobile robotics. While the results section

shows promise, low-power systems, like mobile robots, still require dedicated hardware de-

vices. As a result, the next phase of the protocol seeks to address this acceleration issue and

explore potential strategies to overcome it.

3.2.3 Acceleration of fruit detection models

In section 2.7, we reviewed the computational and resource demands of using DL algo-

rithms. Efforts to enhance network efficiency have led researchers to adjust the foundational

architecture of ANNs. However, these modifications typically result in a trade-off, with a de-
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crease in performance for target detection tasks. Notably, due to their superior parallelisation

capabilities, employing dedicated hardware for running ANNs has emerged as a viable alter-

native.

Furthermore, in the literature review, we highlighted the advantages of utilising FPGAs

for executing algorithms that may benefit from parallelisation. This parallel processing can

be approached at two distinct levels: through DPU or by direct implementation on the FPGA’s

programmable logic (PL) layer. The limitations inherent to the PL layer of the FPGA neces-

sitate a bifurcated approach to our research. Initially, we will conduct an experiment assess-

ing the performance of VineSet with the RetinaNet ResNet 50 on various heterogeneous plat-

forms. Subsequently, we will explore the deployment of simpler ANN models using the RG2C

dataset on the FPGA’s PL.

3.2.3.1 VineSet and RetinaNet ResNet 50 in heterogeneous platforms

In this study, our objective is to evaluate the performance of the VineSet dataset (refer-

enced in section 3.2.1.2) using a RetinaNet model with a ResNet 50 backbone to achieve near

real-time processing capabilities. The RetinaNet ResNet 50 model is an enhancement over the

standard SSD ResNet 50 model, incorporating an additional FPN for improved performance.

This model has been developed and processed using TensorFlow 2.813 and Keras14.

To facilitate the deployment of this network across a variety of heterogeneous platforms

and determine the most suitable platform for our needs, we have utilised additional frame-

works to optimise the models for specific platform architectures. These include Vitis-AI 1.415,

the Edge TPU Compiler16, and TensorFlow TensorRT (TF-TRT)17.

Heterogeneous Platforms This part of the research focuses on evaluating heterogeneous

platforms to identify devices that offer faster inference speeds while minimising accuracy

loss. It involves a comparison of three embedded GPUs – each with processing capacities

of 1000 TFLOPS and 2000 TFLOPS (specifically, the Jetson Nano 2 GB18, Jetson Nano 4 GB19,

and TX220) –, DPUs (utilising FPGAs, identified as AMD-Xilinx ZCU104 and AMD-Xilinx Kria

13See TensorFlow. “TensorFlow.” (2022), [Online]. Available: https://www.tensorflow.org/ (visited on
08/05/2022).

14See Keras. “Keras.” (2022), [Online]. Available: https://keras.io/ (visited on 08/05/2022).
15See Advanced Micro Devices, Inc. “Vitis-AI.” (2022), [Online]. Available: https://www.xilinx.com/

products/design-tools/vitis/vitis-ai.html (visited on 08/05/2022).
16See Google LLC. “Edge TPU compiler.” (2020), [Online]. Available: https://coral.ai/docs/edgetpu/

compiler/ (visited on 08/05/2022).
17See NVIDIA Corporation. “Deep learning frameworks documentation.” (Oct. 27, 2022), [Online]. Available:

https://docs.nvidia.com/deeplearning/frameworks/tf-trt-user-guide/index.html (visited
on 11/05/2022).

18See NVIDIA Corporation. “Jetson Nano 2GB developer kit.” (2022), [Online]. Available: https : / /

developer.nvidia.com/embedded/jetson-nano-2gb-developer-kit (visited on 08/05/2022).
19See NVIDIA Corporation. “Jetson Nano developer kit.” (2020), [Online]. Available: https://developer.

nvidia.com/embedded/jetson-nano-developer-kit (visited on 08/05/2022).
20See NVIDIA Corporation. “Harness AI at the edge with the Jetson TX2 developer kit.” (2022), [Online].

Available: https://developer.nvidia.com/embedded/jetson- tx2- developer- kit (visited on
08/05/2022).

https://www.tensorflow.org/
https://keras.io/
https://www.xilinx.com/products/design-tools/vitis/vitis-ai.html
https://www.xilinx.com/products/design-tools/vitis/vitis-ai.html
https://coral.ai/docs/edgetpu/compiler/
https://coral.ai/docs/edgetpu/compiler/
https://docs.nvidia.com/deeplearning/frameworks/tf-trt-user-guide/index.html
https://developer.nvidia.com/embedded/jetson-nano-2gb-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-2gb-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-tx2-developer-kit
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KV260), and a TPU (found in the Coral Dev Board TPU). To ensure optimal performance, each

platform required its specific compiler to enhance the efficiency of operations directly on the

hardware, thereby increasing the speed of inference.

For optimisation purposes, the NVIDIA RTX309021 GPU was employed to train the DL

model and establish a benchmark with a high-performing and efficient GPU for comparison.

In addition to the specialised hardware, all boards used in this study are equipped with a

processing system (PS) to oversee task coordination and operating system management. The

PS can be based on multiple architectures, but AMD64 and ARM64 are the most commonly

used architectures in current state-of-the-art technology.

NVIDIA GPUs and TF-TRT Four NVIDIA GPUs were utilised in the current benchmark.

The NVIDIA RTX3090 is a robust GPU that incorporates the Ampere Architecture, boasting

24 GB of VRAM. This GPU excels in training deep neural networks efficiently, handling sub-

stantial training batches with ease. Due to its power and efficiency, a direct comparison of

inference speeds is not straightforward, but it serves as a valuable reference GPU for perfor-

mance evaluation. However, its high power consumption, up to 350 W, makes it less suitable

for embedded applications.

NVIDIA’s Jetson GPUs are designed specifically for embedded systems, such as robots,

requiring low power consumption. The Jetson Nano models differ in RAM capacity, offering

2 GB and 4 GB options. The NVIDIA Jetson TX2 is the evolved version of the TX1. In these

boards, the available RAM is shared between the GPU and CPU.

Although all these GPUs support TensorFlow 2 and Keras models, they achieve peak

performance and efficiency when the DL models are optimised for their specific architecture,

utilising specialised CUDA and Tensor cores. NVIDIA’s CUDA and Tensor cores are designed

to optimise parallel and matrix operations, enhancing performance with CNNs. The TF-TRT,

a library developed by NVIDIA, works alongside TensorFlow and TensorRT (TRT), analysing

the ANN graph to determine the best transformations for speed efficiency using dedicated

cores. Moreover, TF-TRT supports adjusting the network graph’s resolution across FP32,

FP1622, and INT8 through quantisation. The advantage of TF-TRT over TRT lies in its

compatibility with TensorFlow, allowing for a hybrid solution where certain operations are

executed in TensorFlow and others in TRT.

AMD-Xilinx FPGAs, Vitis-AI and FINN field programmable gate arrays (FPGAs) are

integrated circuits that can be reconfigured to meet the designer’s needs. Due to its high-

reconfiguration capability, FPGAs can be useful for executing parallelisable algorithms while

keeping the power consumption low. These boards always have two main components

processing system (PS) and programmable logic (PL). The PS is responsible for managing

21See NVIDIA Corporation. “GeForce RTX3090 Family.” (2022), [Online]. Available: https://www.nvidia.
com/en-eu/geforce/graphics-cards/30-series/rtx-3090-3090ti/ (visited on 08/05/2022).

22Half-precision floating-point

https://www.nvidia.com/en-eu/geforce/graphics-cards/30-series/rtx-3090-3090ti/
https://www.nvidia.com/en-eu/geforce/graphics-cards/30-series/rtx-3090-3090ti/
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the operations and memory in the FPGA, while PL concerns to the reconfigurable integrated

circuits. AMD-Xilinx deployed the DPU cores [249], a proprietary programable engine

dedicated for CNN. This unit has a register configure module, a data controller module, and

a convolution computing module. The DPU intellectual property (IP) can be integrated as a

block in the PL with direct access to PS.

FPGAs are highly versatile integrated circuits designed for customisation post-

manufacturing. Their adaptability makes them ideal for executing algorithms that can

be parallelised, thus optimising for both performance and low-power consumption. An

FPGA typically comprises two primary components: the PS and the PL. The PS oversees

general operations and memory management, whereas the PL is dedicated to the reconfig-

urable logic that can be tailored to specific tasks. AMD-Xilinx has introduced DPU cores

[249], specialised programmable engines optimised for CNNs. These cores include a register

configuration module, a data controller, and a convolution computation module, and can be

integrated into the PL for direct interaction with the PS.

In our evaluation, we focus on two FPGAs, identified as AMD-Xilinx ZCU104 and AMD-

Xilinx Kria KV260. Both models share a similar architecture and compatibility, yet AMD-Xilinx

Kria KV260 offers a more compact design suitable for robotics applications. Notably, AMD-

Xilinx ZCU104 is equipped with two DPU cores, enabling it to process two neural network

graphs concurrently, while AMD-Xilinx Kria KV260 incorporates only a single DPU core.

To facilitate the execution of models on the DPUs, they require quantised neural network

graphs into INT8 weights, converted into a format compatible with the DPU. AMD-Xilinx

provides Vitis-AI, a comprehensive Docker23-based environment, to streamline this process.

Vitis-AI stands out as an integrated platform for AI inference development on AMD-Xilinx de-

vices, supporting TensorFlow, PyTorch, and Caffe models. It includes specific quantisers tai-

lored for FPGA architectures, compiling and optimising quantised models for the DPU. More-

over, Vitis-AI offers additional tools for model optimisation and debugging, such as pruning

and profiling utilities.

Coral TPU and Edge TPU compiler The TPU is an AI accelerator ASIC specifically engi-

neered by Google to enhance the performance of ANNs. This ASIC is designed to work seam-

lessly with TensorFlow, accommodating DL models crafted with TensorFlow lite (TFLite), Ten-

sorFlow’s lighter version is tailored for edge devices.

Comparable to FPGAs, the ANNs deployed on edge computing TPUs necessitate quanti-

sation, a process adapting the model’s operations to be fully compatible with the ASIC’s ar-

chitecture by converting these operations into an INT8 format.

The model’s design and management processes are conducted within TensorFlow and

TFLite. To render a model compatible with the TPU, it is converted into a TFLite format using

the Edge TPU Compiler.

23See Docker Inc. “Docker: Accelerated container application development.” (May 8, 2024), [Online]. Available:
https://www.docker.com/ (visited on 05/16/2024).

https://www.docker.com/
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Our experiments utilised the Coral Dev Board TPU, an embedded board integrating a PS

and a TPU system on-module (SoM). Like with FPGAs, operations in embedded TPUs must

also be quantised to INT8. An alternative to the Coral Dev Board TPU is Google’s Coral USB

Accelerator24, which connects to a host computer via USB for rapid inference. This device re-

quires a power supply of 5 V and 500 mA, capable of delivering 4 trillion operations per second

(TOPS) and achieving an efficiency of 2 TOPS/W.

RetinaNet RetinaNet, as highlighted in [252, 253], stands out in the domain of object de-

tection as a state-of-the-art DL model, falling into the category of one-stage detectors. This

model shares similarities with the SSD ANNs, detailed by Liu et al. [145]. It starts with an in-

put layer, followed by a ‘backbone’ network that processes various feature maps to extract

meaningful features from the image. Typically, this backbone is a CNN, with ResNet 50 be-

ing the preferred choice according to the seminal work by Lin et al. [252]. Following this, a

FPN, introduced by [254], is employed. The FPN utilises a top-down architecture to refine

the features processed by the CNN, aiming to boost the efficiency of box classification and

regression tasks.

One of the primary enhancements RetinaNet offers over SSD DL models is the introduc-

tion of a novel custom loss function, known as focal loss [252], which focuses on improving the

accurate detection and classification of objects (true positives (TPs)) over merely identifying

non-objects correctly (true negatives (TNs)).

Considering the advancements provided by RetinaNet ResNet 50 over SSD networks, and

given that these ANNs generally outperform YOLO architectures [C42, 255, 256], RetinaNet

ResNet 50 was selected. The authors built upon a model previously implemented in Tensor-

Flow 2 Keras by Humbarwadi [253], modifying its architecture to ensure compatibility across

various platforms. The model was developed using a functional strategy25. However, pre-

processing and post-processing layers were maintained in the sub-model format since they

did not require conversion or recompilation for any specific platform, but rather were reim-

plemented. To maintain consistency and prevent processing speed degradation, the ResNet

50 was configured with the same pre-trained weights used by the ImageNet dataset [206].

Vitis-AI imposes certain operational constraints when compiling the DL model for FP-

GAs. These constraints are evident in the rectified linear unit (ReLU) operations, which must

be immediately followed by another operation, such as a convolution or mathematical oper-

ation. This requirement affects the network’s compilation, particularly between P6 and P7 of

the FPN (Fig. 3.13), as outputs for the regression and classification layers are required at the

convolution 2D P6 and convolution 2D P7. To address this, an additional convolutional 2D

layer was introduced at P6, effectively duplicating the initial P6 convolution 2D layer (Figure

3.14). This adjustment allows the Vitis-AI compiler to successfully compile all core layers of

24See Google LLC. “USB accelerator.” (2020), [Online]. Available: https : / / coral . ai / products /

accelerator (visited on 09/21/2023).
25See TensorFlow. “The Functional API.” (May 26, 2023), [Online]. Available: https://www.tensorflow.

org/guide/keras/functional (visited on 08/05/2023).

https://coral.ai/products/accelerator
https://coral.ai/products/accelerator
https://www.tensorflow.org/guide/keras/functional
https://www.tensorflow.org/guide/keras/functional
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Figure 3.13: Overview of a simplified diagram of the RetinaNet ResNet 50. Convi are convo-
lutional layers; Mi are intermediate layers composed by upsampling, additions and convolu-
tions to generate FPN output layers Pi ; Pi are convolution layers for the output of FPN.

the model on the DPU, preventing potential architecture splits and ensuring operations are

executed on the CPU as needed.

The changed version of RetinaNet ResNet 50 (Figure 3.14) was trained by fine-tuning until

the convergence of the train loss function. The training algorithm used the focal loss function

and the stochastic gradient descendent (SGD) optimiser. For better adjustment of the learn-

ing rate and momentum values, the authors used the Keras Tuner library [258] with the Hy-

perband algorithm [259] to search for the best values that optimise the validation loss. During

this stage, only two sets of the dataset are used: the train set for training the model and the

validation set for evaluating the model performance in the evaluation metrics and tracking

the model’s overfitting. The model was trained in the GPU RTX3090.

To better understand and assess the performance and reliability of DL models across vari-

ous platforms, our objective is to evaluate these models, specifically focusing on their efficacy

in real-time object detection. This involves a series of steps to deploy the RetinaNet model

across different heterogeneous platforms effectively.

The deployment process of RetinaNet onto each platform is generally consistent but ne-
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Figure 3.14: Overview of a simplified diagram of a modified RetinaNet ResNet 50 for FPGA
compatibility. Convi are convolutional layers; Mi are intermediate layers composed of up-
sampling, additions, and convolutions to generate FPN output layers Pi ; Pi are convolution
layers for the output of FPN.

cessitates the utilization of platform-specific libraries. The steps for deploying the model on

each device are as follows:

1. Fine-tuning the RetinaNet with a ResNet 50 backbone on the VineSet training set;

2. Optionally quantising the model to INT8, depending on the platform’s requirements,

and;

3. Converting and deploying the model into a format compatible with the target platform.

The initial step involves training the ANN, which is uniformly conducted across all plat-

forms using TensorFlow 2 on an NVIDIA GPU RTX3090. Due to some devices’ inability to

compile pre-processing and post-processing layers, only the ANN’s core is utilised in sub-

sequent steps. If necessary, these layers are reimplemented for execution in the PS on each

device.
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Post-training, the model is adjusted with platform-specific libraries. Both TPU and FP-

GAs necessitate model quantisation, which can either be training-aware or post-training, oc-

curring post-model convergence. To ensure compatibility across devices, only post-training

quantisation is used, given that quantisation-aware training may not be compatible with cer-

tain platforms. A calibration dataset derived from the training set is used to quantise the

ANN’s weights and calibrate them to the input data. Since training isn’t performed at this

stage, ground truth labels are not required for the calibration set. It was observed that, due

to processing constraints, NVIDIA Jetson devices are unable to generate quantised models of

RetinaNet ResNet 50.

The final step involves optimising the ANN nodes for the specific hardware, using pro-

prietary compilers such as TF-TRT for GPUs, Edge TPU Compiler for TPUs, and Vitis-AI for

FPGAs. A comprehensive guide for deploying the RetinaNet ResNet 50 on AMD-Xilinx FPGAs

is provided by Magalhães et al. [C49].

Deploying ANNs on heterogeneous devices also entails reimplementing pre-processing

and post-processing layers as needed. Since these layers were removed after the training

phase, they are reconstructed for each device in Python using the OpenCV library, to be exe-

cuted in the PS.

It is crucial to note that this study focuses solely on the core of the DL model. Optimisation

efforts do not extend to pre-processing and post-processing tasks, which are executed on the

device’s CPUs due to certain operational limitations with the compilers.

3.2.3.2 RG2C, FINN and FPGA’s PL

Given the parallelisation computing potential of the FPGA’s PL, ANNs can be incredibly

sped up. So, in this topic, we aim to evaluate the acceleration potential of FPGAs using the

dedicated framework FINN. For this experiment, we consider the AMD-Xilinx ZCU104 and

the classification dataset RG2C. Two types of classifiers will be implemented to explore the

FPGAs’ potential, namely the simplistic convolutional neural vector (CNV) and the MobileNet

v1.

FINN and Brevitas FINN [260, 261] is a comprehensive, Docker-based environment pro-

vided by AMD-Xilinx. Unlike Vitis-AI, FINN operates directly on the PL layer of FPGA, con-

verting ANNs into Verilog code, register-transfer level (RTL) designs, and IP blocks. It stands

out as a freely available, open-source framework dedicated to constructing, executing, and

deploying quantised neural networks (QNNs) on FPGA platforms. FINN offers a robust suite

of tools and modules that streamline the entire QNN development process, from design to

deployment, thereby enhancing the efficiency of DL models.

A workflow for deploying DL models onto FPGAs using FINN is illustrated in Figure 3.15.

A notable limitation of FINN is its exclusive compatibility with PyTorch. Consequently,

all network designs must be tailored to this specification. Nonetheless, FINN provides the

capability to manipulate and adjust DL models down to the bit level, thereby enabling the
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Figure 3.15: Comprehensive workflow for deploying DL models on FPGAs using FINN.

optimisation and compression of network operations to this granularity. This is facilitated by

Brevitas [262], a supplementary library to PyTorch, which redefines common ANN operations

to allow designers to specify the desired bit precision for computations.

In contrast to the conventional approach of employing a DPU IP core as an intermedi-

ary for DL models between the PS and PL, FINN directly deploys a dedicated IP core for each

model. This strategy is primarily constrained by the finite number of configurable logic blocks

available, necessitating careful adjustment of network parallelisation settings and the adop-

tion of compact-sized ANNs for implementation.

CNV A CNV is structured with sequential layers, including two convolution layers and a

maximum pooling layer. The network’s prediction head is powered by three sequential dense

layers. The design and structure of this proposed network are depicted in the diagram in Fig-

ure 3.16 and detailed in Table 3.6, both implementing the framework originally introduced by

Umuroglu et al. [261] for the FINN architecture.

To facilitate the deployment of the CNV on a FPGA, we will explore two variants: one with

two-bit operations in each layer and another with single-bit operations per layer. The latter

is recognised as a binary neural network (BNN) [263, 264]. BNNs are designed to achieve

optimal efficiency by converting all operations into binary bit-level computations, which are
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more efficiently processed at the logic level.
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Figure 3.16: Overview of a simplified diagram of the CNV. Conv are convolution layers; Max-
Pool are maximum pooling layers; and FC are fully connected (or dense) layers.

Layer Type Filter Shape Kernel Size Input Size

Conv 64×3×3 3×3 1×3×3×32
Conv 64×64×3×3 3×3 1×64×30×30

MaxPool Pool 2×2 2×2 1×64×28×28
Conv 128×64×3×3 3×3 1×64×14×14
Conv 128×128×3×3 3×3 1×128×12×12

MaxPool Pool 2×2 2×2 1×128×10×10
Conv 256×128×3×3 3×3 1×128×5×5
Conv 256×256×3×3 3×3 1×256×3×3
Conv – – 1×256×1×1

FC 256×512 – 1×256
FC 512×512 – 1×512
FC 512×1 – 1×512

Table 3.6: CNV Architecture

MobileNet v1 MobileNet v1 [196] is a DL model design for mobile and low computing de-

vices. In its original implementation, it is designed for classification tasks.

The used version of this classifier was implemented in PyTorch as originally stated. How-

ever, some changes in the layers were made to ensure that the ANN fits in the FPGA PL and is
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compatible with input data of (32×32)px. At the end of the MobileNet v1 was appended a pre-

diction head composed of an average pooling layer, a fully connected layer and a quantised

ReLU.

MobileNet v1, as described by Howard et al. [196], is a DL model optimised for mobile

and low-resource computing devices. Primarily designed for classification tasks, this model’s

architecture has been adapted for efficient implementation.

In the version utilised, the MobileNet v1 model was implemented using PyTorch, in line

with the original description. Modifications were made to its layers to ensure that the ANN

is suitable for deployment on FPGAs’ PL and to handle input data with a resolution of (32×

32)px. To accommodate the deployment requirements, the architecture of MobileNet v1 was

appended with a prediction head. This additional component consists of an average pooling

layer, a fully connected layer, and a quantised ReLU.

The process of deploying FPGAs using FINN is outlined in a sequential manner, as de-

picted in the referenced FINN flowchart, Figure 3.15. The procedure up to the Brevitas export

shares similarities with other network deployments and utilises Pytorch. A crucial step in-

volves Brevitas, which is used to implement specific quantisation nodes. These nodes are

essential for specifying the bit count for the various operations.

After training, the network is exported to a standard model format known as FINN-ONNX,

which is compatible with the pen neural network exchange (ONNX)26 format. This FINN-

ONNX model undergoes several transformations aimed at optimising the network architec-

ture, ensuring it aligns well with AMD-Xilinx IP and the FPGA’s PL. Key operations include

streamlining [266], which eliminates unnecessary floating-point operations, merges multi-

ple operations into a single one when feasible, and converts some operations into multiple

threshold nodes. These adjustments help reduce the number of operations and enhance par-

allelisation, resulting in a faster network that utilises the FPGA space effectively.

Next, the network is transitioned into high-level synthesis (HLS) layers, followed by con-

version into custom IP modules or a series of IPs. This stage allows for numerous simulations

to evaluate the network’s optimisation level. The final step involves translating the IPs into

instructions that the FPGA can understand.

Control over the network’s parallelisation is achieved through two parameters: single in-

struction multiple data (SIMD) and process element (PE). SIMD relates to the number of data

elements processed concurrently in a single computation, while PE refers to the number of

parallel computations. The optimisation of these parameters must adhere to specific equa-

tions, (3.1) and (3.2), to ensure all FPGA space is efficiently used. In both equations, H and W

represent the number of input and output features, respectively. These equations follow the

congruence relation notation [267] and state that the remaining between the integer division

of the two values is zero.

26See The Linux Foundation. “ONNX—Open Neural Network Exchange.” (2019), [Online]. Available: https:
//onnx.ai/ (visited on 04/23/2024), The ONNX is a standard to interoperability of ML models between different
frameworks.

https://onnx.ai/
https://onnx.ai/
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0≡H (mod PE) (3.1)

0≡W (mod SIMD) (3.2)

An advantage of this deployment strategy is the direct implementation of ANNs into logic

circuits (configurable logic blocks), optimising performance. Additionally, Brevitas enables

bit-level control over the networks. For this analysis, three scenarios were considered:

• a MobileNet v1 with four-bit quantised weights and biases (‘mobilenet_w4a4’);

• A CNV with two-bit quantised weights and biases (‘cnv_w2a2’); and

• A CNV with one-bit quantised weights and biases (‘cnv_w1a1’).

This protocol assures a probable optimisation of the deep neural networks under low-

power and high-performing devices. However, they may detect multiple objects simultane-

ously. The following strategies aim to develop algorithms that can filter the different objects.

3.2.4 Maturity assessment

As previously mentioned, one potential strategy for identifying and selecting the next fruit

to approach could be based on its stage of maturity. There are various techniques that can be

applied to this end. In our essay, we aim to compare DL models and colour feature analysis

against traditional statistical classifiers.

For this purpose, we will utilise the AgRobTomato and RPiTomato datasets, as detailed

earlier in section 3.2.1. This combined dataset includes images of tomatoes individually cat-

egorised by their ripening stage: ‘unripe’, ‘breaking stage’, ‘reddish’, and ‘ripe’. A total of 632

tomato images will be used in our analysis.

3.2.4.1 Deep learning for maturity classification

The DL models we considered were meticulously designed, trained, and deployed using

TensorFlow version r.1.15.0 or Darknet (similarly to the problem studied in the section 3.2.2),

depending on the type of model. We carried out these procedures in a Colab notebook, util-

ising an NVIDIA Tesla T4 GPU with 12 GB of VRAM and a computation capability that ranges

from 3.5 to 7.5. Among the different DL object detection models we previously tested, we

chose the SSD MobileNet v2 from the TensorFlow Model Zoo and the YOLO v4 from the Dark-

net database. Both models had been pre-trained on the COCO dataset, with an input size of

(640×640)px for SSD MobileNet v2 and (416×416)px for YOLO v4. The decision to use these

two DL models was based on the results from experiments discussed in the sections 3.2.2 and

3.3.1 and referenced in the study by Magalhães et al. [C42].
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We fine-tuned these pre-trained models for the specific task of detecting and classifying

tomatoes according to their maturity stage. The remaining protocol followed the same pro-

cedures as detailed in section 3.2.2. Figure 3.12 outlines the pipeline to reach the complete

trained models.
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 Images
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Test Images
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Split Images
(720 x 720)
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(Transfer Learning)
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Computation

Data
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Figure 3.17: Workflow of the performed methods to reach the trained DL models.

3.2.4.2 HSV colour model space and Gaussian classification

An approach utilising histograms from the HSV colour space has been developed as an

innovative alternative to DL models for the classification of tomato maturity. The code for

this HSV colour space model is accessible at the GitHub repository27

To construct the model, images of tomatoes from different ripeness categories were

selected, with ten tomatoes per category. These images were sourced from both the

AgRobTomato Dataset and the RpiTomato Dataset to incorporate variety, the former

providing a broader view and the latter offering closer shots of the fruits.

The first step involved extracting the regions of interest from these images, utilising the

coordinates from the bounding boxes provided by the CVAT for image cropping.

Subsequently, these regions of interest images were converted from the RGB to the HSV

colour space. This conversion is beneficial as the HSV colour space, particularly the Hue

channel, tends to offer less noise and more robustness against lighting variations compared

to the RGB colour space.

For each HSV image, a colour histogram focusing solely on the Hue channel was gener-

ated using OpenCV [147] to extract the colourimetric data. It’s important to note that OpenCV

represents Hue values on a scale from 0 to 179. Given that the full-colour spectrum is not nec-

essary for accurately modelling tomatoes’ colour distribution, the Hue parameter’s origin was

27See G. Moreira and S. C. Magalhães. “Tomato maturity classification using HSV and gaussian features.”
(Oct. 25, 2021), [Online]. Available: https://github.com/gerfsm/HSV_Colour_Space_Model (visited
on 10/25/2021).

https://github.com/gerfsm/HSV_Colour_Space_Model
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adjusted, yielding a density h-spectrum histogram with a distribution resembling a normal

curve. The entire bin range was utilised to ensure model accuracy.

Nonetheless, this segmentation method has its drawbacks, notably that the region of in-

terest includes portions of the background, potentially causing the data to appear multi-

modal, i.e., displaying more than one peak. Fitting such data with a unimodal model could

lead to inaccuracies.

A Gaussian mixture model was employed to address this challenge, serving as a proba-

bilistic model for representing normally distributed subpopulations within the overall pop-

ulation, as illustrated in the Figure 3.18. This approach facilitates the separation of colour

regions within the image by selecting the Gaussian component with the highest peak, corre-

sponding to the region of interest, and disregarding the rest. The selection is based on the

Gaussian mixture weights normalised, reflecting the law of total probability (theorem 3.2.1).

These weights represent the probabilities of a data point belonging to each Gaussian compo-

nent.

Figure 3.18: Representation of the H-spectrum and a Gaussian mixture model probability
distribution.

Despite background noise, the data distribution within the region of interest is typically

well-defined, suggesting a higher probability (and thus a higher weight) of being a normal dis-

tribution. This method effectively separates tomato pixels from the background pixels. For

a more refined analysis, box plots for each region of interest were also produced, showcas-

ing values within three standard deviations of the mean, corresponding to 99.7 % of the data

under a Gaussian distribution.

Theorem 3.2.1 (Law of total probability). In a discrete case, if {Bn : n ∈N+} is a finite or count-

ably infinite partition of a sample space and each even Bn is measurable, then for any event A

of the sample space:

P (A) =
∑

n

P (A∩Bn )
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In summary, this HSV colour space approach, complemented by Gaussian mixture mod-

els, presents a compelling alternative to DL methodologies for the classification of tomato

maturity, with the procedural steps and theoretical foundations graphically described in the

Figure 3.19.
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Figure 3.19: Workflow of the performed methods to reach the HSV colour space model.

3.2.5 Results evaluation

The literature highlights a variety of evaluation metrics for model performance assess-

ment [269, 219]. Initially, we utilised the default metrics available in the pipeline during the

model training phase. However, given the differences in evaluation criteria between the

COCO dataset and OID, it was imperative to adopt a unified metrics pipeline for evaluation.

We opted for the metrics utilised in the Pascal VOC challenge [219], specifically the precision

× recall curve and the mean average precision (mAP), following the implementation by

Padilla et al. [269] and the FiftyOne library28. To further enhance our evaluation, we included

additional metrics: (a) total recall; (b) total precision; (c) F1 score.

Recall, as defined in equation (3.3), measures the model’s capability to detect all relevant

objects, essentially the proportion of detected bounding boxes within the validation set. Pre-

cision, defined in equation (3.4), assesses the model’s accuracy in identifying only relevant

objects, aiming to minimise FPs. The F1 score, given in equation (3.5), calculates the har-

monic mean between recall and precision, providing a balance between the model’s precision

and recall.

In object detection, TPs signify correct detections, FPs denote objects incorrectly de-

tected, and FNs represent missed objects. The total ground truths are computed as TP + FN,

and the total detections are TP + FP. Detections are validated using the intersection over

union (IoU) metric [269], only considering detections with an IoU ≥50 %.

28See Voxel51. “FiftyOne.” (2023), [Online]. Available: https : / / docs . voxel51 . com/ (visited on
12/14/2023).

https://docs.voxel51.com/
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Recall=
TP

TP+FN
(3.3)

Precision=
TP

TP+FP
(3.4)

F1=2×
Precision×Recall

Precision+Recall
(3.5)

For classification models, alongside the aforementioned metrics, TNs (predictions accu-

rately identified as not belonging to a class) are also considered. Accuracy, defined in equation

(3.6), measures the overall proportion of correct predictions. In scenarios with unbalanced

datasets, balanced accuracy, as given in equation (3.9), is preferred for a fair performance as-

sessment, incorporating both the sensitivity equation (3.7) – equivalent to recall – and the

specificity, equation (3.8), which gauges the proportion of actual negatives correctly identi-

fied.

Accuracy=
TP+TN

TP+FP+TN+FN
(3.6)

Sensitivity=
TN

TN+FP
(3.7)

Specificity=
TP

TP+FN
(3.8)

Balanced accuracy=
Sensivity+Specificity

2
(3.9)

This approach ensures a comprehensive evaluation of both object detection and classifi-

cation models, employing a range of metrics to assess their performance accurately.

3.3 Results

During this section, we will present and explore the results of the different experiments

previously made. This analysis is made concerning the evaluation metrics stated in the sec-

tion 3.2.5, which are broadly accepted in the literature.

3.3.1 Fruit detection

In this section, we present and assess the findings related to the challenge of fruit detec-

tion within a cultivar setting, referring specifically to section 3.2.2. Our analysis primarily

focuses on evaluating different SSD and YOLO models to determine their efficacy. Besides

comparing models trained on the Tomato dataset, we also investigate the effectiveness of

utilising the OID dataset for tomato (and potentially other fruits) detection in a cultivar envi-

ronment. As highlighted in section 3.2.5, the performance of the trained models was gauged

using metrics from the Pascal VOC challenge, along with additional metrics, which include:
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• Recall × precision curve;

• mean average precision (mAP);

• Total recall;

• Total precision;

• F1 score;

• Inference time.

Prior to delving into the models’ performance evaluation, it’s important to identify the

optimal confidence threshold. This threshold is relevant as it maximises the F1 score (illus-

trated in Figure 3.20), thereby ensuring a balance between precision and recall. This balance

is essential for optimising the number of TPs while minimising the amount of FPs and FNs

as shown in Figure 3.21. From this figure, we can discern models with superior performance,

where models exhibiting flatter curves suggest higher prediction confidence and fewer FPs

and FNs. Here, we determine the maximum F1 score for each model alongside its confidence

threshold, as detailed in Table 3.7. These values are pivotal for the models’ prediction capa-

bilities.

SSD MobileNet v2 deserves special attention due to its notably low FPs occurrence (Fig-

ure 3.21). This characteristic is crucial to avoid mistakenly targeting non-fruits, thus prevent-

ing potential harm to the crops or the harvesting robot.

Table 3.7: Confidence threshold for each DL model that optimizes the F1 score metric, indi-
cating their performance levels.

Confidence F1-Score

YOLOv4 tiny ≥49 % 85.92 %
SSD Inception v2 ≥21 % 89.85 %
SSD MobileNet v2 ≥40 % 82.22 %
SSD ResNet 50 ≥46 % 90.46 %
SSD ResNet 101 ≥34 % 81.75 %

The previous analysis assessed the models on a validation set. Now, we will assess the

performance evaluation on the test set. The test set, an independent collection of images,

helped gauge the trained DL models’ generalisation ability. The study commenced with a

two-pronged approach, focusing on fully characterised models and models with a ≥0 % con-

fidence threshold. A significant insight was the advantage of imposing a confidence rate limit.

For the task of detecting tomatoes in greenhouse images, we constructed smooth

precision-recall curves, revealing the trade-off between recall and precision across different

confidence score thresholds, as detailed in Figure 3.22. Typically, higher confidence thresh-

olds yield more precise but less comprehensive predictions. All models, except for SSD
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Figure 3.20: Evolution of the F1 score with the variation of the confidence threshold for all DL
models in the validation set without augmentation.
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(c) False Negatives

Figure 3.21: Evolution of the number of TPs, FPs, and FNs with the increase of the confidence
threshold.

MobileNet v2, nearly achieved a 100 % recall rate, though, the precision hovered around 0 %.

The model with the highest area under the curve (AUC), as reported by Padilla et al. [269],

demonstrated superior performance. YOLO v4 Tiny and SSD ResNet 50 showed comparable
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excellence; however, their low precision at high recall rates, coupled with reduced overall

recall and F1 scores (Table 3.8), indicated substantial prediction noise and a high FP rate.

Notably, SSD ResNet 50 exhibited the poorest outcomes among it and an YOLO v4 Tiny.

Considering all model predictions and using the F1 score as a balanced metric of recall and

precision, SSD MobileNet v2 was identified as the best-performing model.

Table 3.8: Results of the different SSD and YOLO models over many metrics, considering all
the predictions and the best-computed confidence threshold.

Model Confidence
Inference

Time
mAP Precision Recall F1

YOLOv4 Tiny ≥0 % 4.87 ms 77.19 % 6.38 % 97.52 % 11.98 %
SSD Inception v2 ≥0 % 24.75 ms 70.39 % 3.53 % 95.82 % 6.82 %
SSD MobileNet v2 ≥0 % 16.44 ms 57.99 % 78.07 % 62.44 % 69.39 %
SSD ResNet50 ≥0 % 47.78 ms 75.74 % 3.6 % 97.62 % 6.94 %
SSD ResNet101 ≥0 % 59.78 ms 66.88 % 3.55 % 96.32 % 6.85 %

YOLO v4 Tiny ≥49 % 4.87 ms 47.48 % 88.39 % 49.33 % 63.32 %
SSD Inception v2 ≥21 % 24.75 ms 48.54 % 85.31 % 50.93 % 63.78 %
SSD MobileNet v2 ≥40 % 16.44 ms 51.46 % 84.37 % 54.40 % 66.15 %
SSD ResNet50 ≥46 % 47.78 ms 42.62 % 92.51 % 43.59 % 59.26 %
SSD ResNet101 ≥34 % 59.78 ms 36.32 % 88.63 % 38.13 % 53.32 %
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Figure 3.22: Precision × recall curve in the test set considering all the predictions.

The low precision rates were often attributed to the low confidence in predictions, as iden-

tified during the confidence threshold tuning process. By applying an additional filtering pro-

cess based on the optimal confidence threshold to maximise the F1 score on the validation set

(Table 3.7 and Figure 3.20), we observed an increase in precision (Table 3.8). This approach
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transformed the precision× recall curve (Figure 3.23) through a truncation process, ensuring

all predictions had a precision rate higher than 80 % but a recall rate lower than 60 %. Among

the fully characterised models, SSD MobileNet v2 remained the top performer. Nonetheless,

YOLO v4 Tiny, despite its slightly inferior performance evaluation for real-time applications,

showcased notable inference time. It is essential to highlight that this model is quantised

(INT8), unlike others (FP32), not warranting a fair comparison of all models. SSD ResNet 101,

being overly complex for this task, overfitted the training data and performed poorly.
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Figure 3.23: Precision × recall curve in the test set using the calibrated confidence threshold.

Quantisation maps continuous or large sets (in this context, FP32) to a confined set.

In DL, typically, this process involves converting neuron weights and biases into 8-bit

integers (INT8). Such quantisation suits edge devices execution for real-time operation, as it

marginally impacts ANNs performance while significantly boosting their speed [271].

The models struggled to generalise effectively for tomato classification, resulting in sig-

nificant performance drops from the validation to the test set. Enhancing the amount of

data and the variability could mitigate this issue. Additionally, a thorough analysis of the data

could be relevant, with the aim of reducing repeatability and searching for the most unique

data, applying data-centric strategies.

From Figure 3.26, using unfiltered inference predictions led to numerous FPs. Filtering

results using a threshold or a similar process significantly improved performance across all

models, except for SSD MobileNet v2. This model demonstrated a well-balanced precision

and recall with a high confidence rate in its predictions, avoiding scenarios of near 0 % preci-

sion. Moreover, it consistently achieved a precision rate above 80 %, allowing its use without

further filtering.

As explained in section 3.2.2, we considered additional essays with the state-of-the-art

dataset OID v6, which contains images of fruits, including tomatoes. We trained the DL mod-
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els on a portion of this dataset and evaluated their ability to detect tomatoes in greenhouse

plants. We have tabulated the results of using these models on the test set of the acquired

dataset, with a confidence threshold of 30 %, in table 3.9. Our conclusion from these data is

that no model can be used for the agricultural detection of fruits.

The training of respective models with various classes was challenging and time-

consuming. The different classes considered were problematic, particularly those containing

small datasets and having weak robustness. After analysing the test set, we found that using

models trained on OID v6 resulted in several incorrect detections, including the labels

of bounding boxes with different fruits, such as grapes, bananas, apples, lemons, among

others, that are included in the 15 classes (Fig. 3.25). Among various incorrect detections, we

highlight the clustering of tomatoes as a single fruit and the detection of leaves as a fruit.

The poor results of OID v6 are directly related to the tomato class dataset, with images

of ripe tomatoes (red – Fig. 3.2) and with few tomatoes per image, unlike those intended

to detect tomatoes. This type of fruit is uncommon in greenhouses since tomatoes must be

harvested at an early stage of maturity to accommodate further processing and shipping of

goods.

Table 3.9 shows the results of the different SSD and YOLO models evaluation, with a con-

fidence threshold of 30 %. We can see that the YOLO v4 model has 0.0 % of mAP. The SSD

ResNet 50 model has a mAP of 0.33 %, while the SSD Inception v2 and SSD MobileNet v2

models have mAP of 0.49 % and 1.18 %, respectively.

Model Dataset mAP Precision Recall F1

YOLO v4 OID v6 0.0% 0.0% 0.0% 0.0%
SSD ResNet 50 OID v6 0.33% 95.65% 0.34% 0.68%
SSD Inception v2 OID v6 0.49% 96.97% 0.49% 0.98%
SSD MobileNet v2 OID v6 1.18% 63.91% 1.67% 3.25%

Table 3.9: Results of the different SSD and YOLO models evaluation, considering a confidence
threshold of ≥30 %.

To better understand the models’ capabilities, we performed additional analysis of the

results by considering representative images from the dataset for specific situations in the

captured dataset, such as:

1. darkened tomatoes;

2. occluded tomatoes;

3. overlapped tomatoes.

Figure 3.27 presents a representative result of darkening tomatoes, which occurs when

the robot enters the greenhouse or when tomatoes are sun-protected in the shadow of other

plants or leaves. In this scenario, all models yielded similar results. However, SSD MobileNet

v2 outperformed slightly, detecting one additional tomato in the considered images.
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Figure 3.24: Precision × recall curve in the test set considering a confidence rate threshold of
30 %.

(a) YOLOv4 (b) SSD ResNet 50 (c) SSD Inception v2 (d) SSD MobileNet v2

Figure 3.25: Sample image results of the different models trained on OID v6.

Occlusion refers to situations where a tomato is not fully visible, potentially occluded by

branches, stems, leaves, or other tomatoes. Overlapping or clustering is a specific scenario

where a tomato is occluded by other tomatoes, and the detection system should identify both

tomatoes. Figure 3.28 illustrates a typical occlusion case by leaves. In this scenario, SSD Mo-

bileNet v2 demonstrated the best network generalisation, detecting tomatoes with less than

50 % of their area occluded. The other networks failed to detect the occluded tomatoes.
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(a) YOLOv4 Tiny (b) SSD Inception
v2

(c) SSD MobileNet
v2

(d) SSD ResNet 50 (e) SSD ResNet 101

(f) YOLO v4 Tiny (g) SSD Inception
v2

(h) SSD MobileNet
v2

(i) SSD ResNet 50 (j) SSD ResNet 101

Figure 3.26: Comparison between using unfiltered images (a–e) and filtered images through
the computed confidence threshold (f–j).

(a) YOLOv4 Tiny (b) SSD Inception
v2

(c) SSD MobileNet
v2

(d) SSD ResNet 50 (e) SSD ResNet 101

Figure 3.27: Result comparison for darkened images.

(a) YOLOv4 Tiny (b) SSD Inception
v2

(c) SSD MobileNet
v2

(d) SSD ResNet 50 (e) SSD ResNet 101

Figure 3.28: Result comparison for occluded tomatoes.

Considering the case of clusters or overlapping tomatoes (Fig. 3.29), all the DL models
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performed similarly, indicating any of them could be effectively used for this situation.

In summary, SSD MobileNet v2 emerged as the best-performing model. It effectively

handled all situations, minimised FPs, and was the fastest network among the SSD models,

achieving inference in 16 ms with a high-performance GPU. However, the performance of

YOLO v4 Tiny cannot be overlooked due to its quantised model significantly reducing pro-

cessing time.

This work addressed the significant challenge of detecting tomatoes in the early ripen-

ing stage, where colour features are less distinguishable, as highlighted in the literature re-

view. We have made this dataset public to aid further research and we have analysed the

most promising ANN models for edge computing. We discovered that tuning the confidence

threshold parameter could significantly enhance model performance. This research paves

the way for deploying these models into real-world robots and perception systems to bench-

mark against human labour in terms of detection time, reliability, and accuracy.

(a) YOLOv4 Tiny (b) SSD Inception
v2

(c) SSD MobileNet
v2

(d) SSD ResNet 50 (e) SSD ResNet 101

Figure 3.29: Result comparison for overlapped tomatoes.

3.3.2 Acceleration of fruit detection

As an approach for the speed of inference problems performed in the previous section,

here, we will cover the acceleration of DL models through the use of dedicated hardware. Our

benchmarks utilised the NVIDIA RTX3090 GPU as the reference platform to assess the per-

formance of the RetinaNet ResNet 50 model across various heterogeneous platforms, using

the VineSet. It is important to note that the NVIDIA RTX3090 GPU is both high-performing

and power-intensive, making the values presented here reference points rather than direct

comparisons, especially in terms of inference speed. Figure 3.30 demonstrates the model’s

accuracy on the test set. The model was specifically compiled to optimise hardware utiliza-

tion, primarily leveraging Tensor cores. Across all compiled versions of the RetinaNet ResNet

50, results were consistent, with a slight improvement observed in the default TensorFlow 2

model version. This discrepancy can be attributed to a reduction in detection confidence

post-compilation, leading to the exclusion of detections below the confidence threshold.

Figure 3.31 clearly illustrates the benefits of compiling DL models for NVIDIA-specific

hardware. Without altering the weight variable type, i.e., maintaining the weights in FP32,
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Figure 3.30: Inference performance in the evaluation metrics in the reference GPU consider-
ing RAW TensorFlow 2 and the optimised models for NVIDIA Tensor cores. INT8 report to the
model’s weights quantised into 8-bit integers, FP16 to weights into 16-bit floating-point, and
FP32 to weights into 32-bit floating-point.

TF-TRT was able to achieve an inference speed increase of tenfold compared to TensorFlow

2. Reducing the weight resolution from FP32 to FP16 resulted in models that were 2.2 times

faster than TF-TRT FP32 and 26 times faster than TensorFlow 2. Given that NVIDIA RTX3090

GPU is not optimised for integer operations, converting to INT8 proved to be ineffective.
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Figure 3.31: Processing framerate in the reference GPU NVIDIA RTX3090 considering RAW
TensorFlow 2 and the optimised models for NVIDIA Tensor cores. INT8 report to the model’s
weights quantised into 8-bit integers, FP16 to weights into 16-bit floating-point, and FP32 to
weights into 32-bit floating-point.

Despite these advancements, performance disparities in evaluation metrics were

observed among embedded platforms (Figure 3.32). Limitations in memory and device
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capacity prevented some model’s evaluation on the NVIDIA Jetson Nano GPUs. The NVIDIA

Jetson TX2 emerged as the top-performing device in these metrics, capable of compiling

models only in FP32 and FP16 due to memory constraints that precluded INT8 quantisation.

The NVIDIA Jetson TX2 achieved a commendable balance between precision and recall,

maintaining a stable F1 score. Conversely, the TPU was identified as the least effective device,

with quantisation significantly altering the model’s weights and sacrificing resolution, which

diminished both precision and recall, and consequently, the F1 score. FPGAs offered a

middle ground, balancing the performance metrics by compensating for decreased recall

with increased precision, or vice-versa, which helped stabilise the F1 score across devices.

The mAP analysis corroborates these findings.
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Figure 3.32: Inference performance in the evaluation metrics in the edge computing devices.
INT8 report to the model’s weights quantised into 8-bit integers, FP16 to weights into 16-bit
floating-point, and FP32 to weights into 32-bit floating-point.

Figure 3.33 depicts the inference speeds across the various devices under study. The GPU

was the slowest among the heterogeneous platforms. Using FP16 instead of FP32 resulted in

a 1.6 times improvement in speed. However, the model could not be compiled and quantised

to INT8. On the other hand, FPGAs demonstrated superior speed. Utilising a single DPU,

these devices were 5.6 times faster than the NVIDIA Jetson TX2 FP32 and 3.4 times faster than

both the NVIDIA Jetson TX2 FP16 and TPU. Employing two DPUs from ZCU104 allowed the

inference speed to reach 25 FPS.

To enhance comprehension of the effects of quantisation or the impact of changing vari-

able types, figures 3.34, 3.35, and 3.36 delineate the networks’ performance across various

evaluation metrics for each class. The bunches of berry-closed grapes, as depicted in figure

3.35, emerge as the most stable and predictable category. Alterations in the network’s weights

do not significantly influence the performance detection of evaluation metrics. Conversely,

the bunches of berry-corn size grapes and trunks, exhibited in figure 3.37 and appendix B,

present more challenging attributes. The berry-corn size grape bunches are notably small
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Figure 3.33: Processing framerate in the edge computing devices. INT8 report to the model’s
weights quantised into 8-bit integers, FP16 to weights into 16-bit floating-point, and FP32 to
weights into 32-bit floating-point. FPGAs can have multiple DPU cores: 1DPU remains to the
use of a single DPU and 2DPU is the simultaneous use of 2 DPU cores.

– appearing shortly after inflorescence – and bear a colour resemblance to the background.

Trunks, on the other hand, display a high variability in shape and size. Moreover, the network

often misidentifies many masts within vineyards as the trunks of vines.

The process of quantisation, when operating under the constrained resources of TPU, di-

minishes the count of detections (as shown in figures 3.34 and 3.36), which, in turn, lowers

the TPU’s recall (3.3). This reduction in the number of detections also decreases the inci-

dence of FP and, consequently, impacts the TPU’s precision (3.4). The marginal case, where

quantisation actually mitigates the network’s noise and enhances the performance detection

of evaluation metrics, is unveiled in ZCU104, further supported by Gong et al. [272].

In mobile systems that utilise heterogeneous platforms, especially those reliant on bat-

tery power, it is crucial to manage power consumption effectively. According to the literature,

these devices are prevalent in mobile applications. As such, Figure 3.38 illustrates the power

consumption for various devices. It is observed that while the energy consumption for in-

ference across all devices is relatively similar, there is a significant variation in power usage

during their operating system (standby) operations.

We also aimed to assess the ability to accelerate the inference process by focusing solely

on the FPGA’s PL. This involves deploying ANNs as an FPGA IPs through the FINN framework.

Parallel to the development with Vitis-AI, FINN is designed to translate ANN operations into

logic levels. However, it’s crucial to maintain a reliable metric performance for the classifi-

cation problem. The performance of various networks deployed in FINN, evaluated using

different metrics for the RG2C dataset, is documented in Figure 3.39. Data confirms that the

networks deliver consistent and dependable performance. Thus, these networks are suitable

for use in robotic applications requiring rapid attention mechanisms. Figures 3.40, 3.42, and
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Figure 3.34: Inference performance for the evaluation metrics in the different heterogeneous
devices for the class of bunches of berry-corn size grapes. INT8 report to the model’s weights
quantised into 8-bit integers, FP16 to weights into 16-bit floating-point, and FP32 to weights
into 32-bit floating-point. FPGAs can have multiple DPU cores: 1DPU remains to the use of
a single DPU and 2DPU is the simultaneous use of 2 DPU cores.

3.44 showcase some instances of FNs for the different models, whereas Figures 3.41, 3.43, and

3.45 display instances of FPs. These examples highlight certain images, specifically partials

of trunks, that are frequently misidentified as grapes.

The speed of inference was further evaluated, as detailed in (3.11). Figure 3.46 illustrates

the frame rate for different models deployed on the FPGA’s PL using the FINN framework.

This comparison clearly shows the advantage of utilising FINN models over the fastest models

from the previous analysis, notably the Vitis-AI on ZCU104. MobileNet v1, with four bits for

both weights and biases, achieved speeds up to 263 faster. Conversely, CNV only managed to

be 32 faster. Given that CNV is significantly smaller than MobileNet v1, there is potential for

further optimisation and speed improvements for CNV compared to MobileNet v1.

F P Sc h unk =
1

ta v g

(3.10)

F P Si ma g e =F P Sc h unk ×Nc (3.11)
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Figure 3.35: Inference performance for the evaluation metrics in the different heterogeneous
devices for the class bunches of berry-closed grapes class. INT8 report to the model’s weights
quantised into 8-bit integers, FP16 to weights into 16-bit floating-point, and FP32 to weights
into 32-bit floating-point. FPGAs can have multiple DPU cores: 1DPU remains to the use of
a single DPU and 2 DPU is the simultaneous use of 2 DPU cores.
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Figure 3.36: Inference performance for the evaluation metrics in the different heterogeneous
devices for the class of trunks. INT8 report to the model’s weights quantised into 8-bit inte-
gers, FP16 to weights into 16-bit floating-point, and FP32 to weights into 32-bit floating-point.
FPGAs can have multiple DPU cores: 1DPU remains to the use of a single DPU and 2DPU is
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3.3 Results 87
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Figure 3.37: Some sample images with the inference results. Details of this figure were added
to appendix B in figures B.1 to B.10. Blue – ground-truth; light green – NVIDIA RTX3090 TF2;
orange – NVIDIA RTX3090 TF-TRT FP32; brown – NVIDIA RTX3090 TF-TRT FP16; dark yel-
low – NVIDIA RTX3090 TF-TRT INT8; red – AMD-Xilinx Kria KV260; dark green – AMD-Xilinx
ZCU104; pink – Coral Dev Board TPU
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Figure 3.38: Power consumption.
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Figure 3.39: Inference performance in the evaluation metrics for FPGA FINN models consid-
ering the RG2C dataset. The i , j values in wi a j report the number of bits being considered
for the layers’ weights (w ) and biases (or activations, a ).

Figure 3.40: Some false negatives for FINN MobileNet v1 w4a4. Cyan labels are the ground
truth and purple labels are the predictions.

Figure 3.41: Some false positives for FINN MobileNet v1 w4a4. Cyan labels are the ground
truth and purple labels are the predictions.
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Figure 3.42: Some false negatives for FINN CNV w2a2. Cyan labels are the ground truth and
purple labels are the predictions.

Figure 3.43: Some false positives for FINN CNV w2a2. Cyan labels are the ground truth and
purple labels are the predictions.

Figure 3.44: Some false negatives for FINN CNV w1a1. Cyan labels are the ground truth and
purple labels are the predictions.
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Figure 3.45: Some false positives for FINN CNV w1a1. Cyan labels are the ground truth and
purple labels are the predictions.
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Figure 3.46: Processing frame rate for FPGA FINN models considering the RG2C dataset. The
i , j values in wi a j reports number of bits being considered for the layers’ weights (w ) and
biases (or activations, a ).
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3.3.3 Maturity assessment

Two methods were used to estimate the maturity stage of the fruit: DL models and colour

features with Gaussian curves, through Gaussian mixtures.

3.3.3.1 HSV Colour Space Model Classifier

The model was developed by analysing the mean of the Hue histogram for each sample

and its correlation with the respective class, leading to the derivation of a quadratic function

as the statistical classifier. This derivation was achieved through the application of the least

squares algorithm. The correlation and the derived quadratic function are illustrated in Fig-

ure 3.47.

Figure 3.47: Correlation between the Gaussian mean of the Hue histogram for each sample
and its respective class. This also includes the plot of the trend line, the equation, and the R2

value for the quadratic function obtained.

To classify tomatoes into specific categories, it was necessary to establish thresholds for

each class. This was achieved by adjusting the equation of the quadratic function, specifically

by adding 0.25 to the independent term, as shown in the equation (3.12):

f (x ) =

















Green, if 000.1x 2−0.2241x +12.613≤1.5

Turning, if 1.5<000.1x 2−0.2241x +12.613≤2.5

Light Red, if 2.5<000.1x 2−0.2241x +12.613≤3.5

Red, if 000.1x 2−0.2241x +12.613>3.5

(3.12)

This equation culminated in the creation of the ultimate model. For a specific image,

the model processes the bounding box coordinates of the fruits to be classified (input) in a

single pass. It segments the regions of interest using the HSV colour space model and extracts

colourimetric information based on the Hue channel. Subsequently, the Gaussian Mixture
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probabilistic model generates a histogram and calculates its mean. This mean value, through

the statistical classifier, produces an output, classifying the fruit into one of the predefined

categories.

3.3.4 Tomato Ripeness Classification: Deep Learning vs. HSV Colour Space Mod-

els

Regarding the classification problem, Table 3.10 presents the results for the different met-

rics used to evaluate two DL models and the proposed HSV colour space model. All models

demonstrated a strong ability to distinguish the Red tomato class, achieving precision rates

above 80 %, with the HSV colour space and YOLO v4 models notably achieving approximately

89 %. However, there was a significant challenge in classifying all relevant objects of this class,

with the exception of the SSD MobileNet v2 model, which attained a recall of 84 %.

In contrast, the task of detecting and classifying green tomatoes significantly impacted

the performance of the SSD MobileNet v2 model. Both the YOLO v4 and HSV colour space

models delivered excellent results in terms of precision and recall, with the proposed model

notably exceeding 98 % in both metrics.

A considerable challenge was observed across all models in distinguishing between the

Turning and Light Red tomato classes, especially for the SSD MobileNet v2 and HSV colour

space models, which failed to detect even half of the relevant objects in these two classes,

resulting in poor recall rates of around 43 %.

The Macro F1 score and Balanced Accuracy metrics offer a more comprehensive under-

standing of the results obtained. The YOLO v4 model outperformed both the SSD MobileNet

v2 and HSV colour space models with a Macro F1 score of 74.16 %. The reduced performance

of the SSD MobileNet v2 model was largely due to its limited effectiveness in differentiating

between Turning and Light Red tomatoes.

In terms of Balanced Accuracy, the YOLO v4 model again demonstrated superior perfor-

mance in classifying the fruits, achieving a Balanced Accuracy of 68.87 %. However, the HSV

colour space model also achieved a competitive result of 68.10 %, primarily due to its robust

ability to classify Green and Red class tomatoes.

Figure 3.48 illustrates cases of poor classifications due to the difficulty of the models in dis-

tinguishing some tomato classes. An interesting aspect is how the DL models addressed these

challenges. For some fruits, the models generated two bounding boxes of different classes.

Although the tomatoes were correctly detected, at least one of the class predictions was in-

correct, ultimately affecting the classification results obtained.

3.4 Discussion

For detecting fruits in their natural context within cultivars, we utilised DL models, specif-

ically YOLO v4 Tiny, SSD MobileNet v2, SSD Inception v2, SSD ResNet 50, and SSD ResNet
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Table 3.10: Classification results of the over the evaluation metrics, considering each model’s
best-computed confidence threshold.

DL Models Fruit Ripeness Precision Recall Macro F1-Score Balanced Accuracy

SSD MobileNet v2

Green 77.27% 70.09%

65.93% 62.70%
Turning 59.38% 55.88%

Light Red 60.61% 40.82%
Red 80.77% 84.00%

YOLOv4

Green 85.38% 84.66%

74.16% 68.87%
Turning 70.77% 67.65%

Light Red 76.32% 59.18%
Red 88.89% 64.00%

HSV Colour Space

Green 98.24% 98.31%

70.93% 68.10%
Turning 50.00% 63.24%

Light Red 58.33% 42.86%
Red 89.47% 68.00%

Figure 3.48: Classification results comparison between the two DL models and the HSV colour
space model with the ground truth annotations. Green, Yellow, Orange and Red bounding
boxes represent Green, Turning, Light Red and Red tomato predictions, respectively.

101. A relevant aspect of leveraging ANNs is their thorough characterisation, including the

confidence threshold. For optimisation, we selected the value that maximises the F1 score

in the valiation set, proving effective and yielding reasonable outcomes. The validation set

was instrumental in monitoring the training process and optimising the confidence thresh-

old, whereas an independent test set offered more reliable results, as shown in tables 3.7 and

3.8. An additional calibration process for confidence threshold optimisation proved benefi-

cial, as illustrated in figure 3.20 and table 3.7, enhancing network sensitivity and improving

object detection.
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The incorporation of a complementary test set proved crucial. Initially, the SSD ResNet

50 model was identified as the top performer using a validation set; however, it ranked as the

second-worst ANN with the test set. Thus, for this study, simpler networks, namely YOLO Tiny

v4 and SSD MobileNet v2, emerged as the most adept at solving our problem. SSD Inception

v2 also showed promising results, ranking second. The more complex and larger SSD ResNet

101 model was the least effective for detecting tomato fruits in greenhouse cultivars, likely

due to overfitting caused by the dataset’s small size and variability. To address this, increasing

data variability and collecting additional data under various conditions are recommended.

Additionally, a thorough review of the dataset can be beneficial by removing repeatitive data

and optimising the uniqueness representative of data, using data-centric strategies.

This essay also examined the models’ limitations under specific conditions such as partial

occlusion and darkness. Smaller models reported fewer FPs and generally performed better.

However, significant overlap observed in SSD ResNet 101 suggests a need for optimising the

NMS strategy.

The literature, as reviewed in chapter 2, extensively explores perception algorithms for

detecting and classifying various objects, distinguishing between classical image analysis and

ML algorithms. Recent advancements focus primarily on DL models and their superior ability

to identify complex objects. Our findings for detecting tomato fruits are consistent with recent

literature, effectively identifying visible and accessible fruits, especially during early maturity

stages. Challenges persist in detecting partially occluded and darkened fruits.

To enhance the efficacy of robotic systems, models should be executed on effective, low-

power devices to achieve near real-time inference. For this purpose, several heterogeneous

platforms were evaluated, including embedded GPUs, TPU, and FPGAs.

Upon comparing all benchmarked devices, it is evident that for achieving the best perfor-

mance in terms of evaluation metrics and time efficiency, high-performance GPUs remain the

superior choice. However, it is crucial to mention that this study did not include other high-

performance devices, such as server-side FPGAs (e.g., AMD-Xilinx Alveo family), but rather

focused on low-power heterogeneous devices suitable for integration into mobile systems like

robots. Despite FINN networks demonstrating superior performance in evaluation metrics

and faster inference, it is important to recognise that these networks were evaluated using a

classification problem with a different dataset, not an object detection model. The process of

compiling the network across different devices did not significantly alter the model’s perfor-

mance in evaluation metrics, although some resolution reduction occurred.

Within the realm of edge computing devices, even though GPUs exhibited the highest per-

formance in evaluation metrics, FPGAs were considerably faster. It is important to note that

this study only benchmarked the core model, excluding pre-processing and post-processing

layers. Therefore, FPGAs, with their capabilities, could better parallelise these processes. Be-

sides the DPU, they also incorporate the PL and an onboard GPU. While the PL was utilised

through FINN models for classifying small image segments, the GPU was not considered but

could potentially be employed for primarily pre-processing or post-processing tasks.
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Attempts to benchmark NVIDIA Jetson Nano 2 GB and 4 GB were made, but their limited

capabilities hindered the conversion and compilation of the model into TF-TRT, leading to

their exclusion from this research analysis.

Figure 3.37 presents images from the test set alongside the detections made by each device

and the ground truth. Extended versions of these images can be found in appendix B from

figures B.1 to B.10. Generally, all devices managed to effectively detect the target objects, with

most detections closely matching across different samples. Figure 3.37e illustrates a grape

detected twice due to its size and partial occlusion by a leaf. From images 3.37b and 3.37c,

it is evident that berry-corn size grapes pose the greatest detection challenge. This issue is

highlighted in figure 3.34, where the F1 score is generally below 60 %. However, this may not

significantly impact practical applications as other landmarks can aid in robot localisation.

Nonetheless, detecting trunks and bunches of berry-closed size grapes is important for tasks

such as monitoring or harvesting, with detection ratios for these classes ranging between 70 %

to 80 % in figures 3.35 and 3.36, making them viable for practical applications. Therefore, the

overall low mAP of about 60 % demonstrated in figures 3.30 and 3.32 can be attributed to the

poor detection ratio of bunches of berry-corn size grapes. Figures 3.37f to 3.37j display var-

ious detection errors introduced by different model versions. Further improvements should

focus on optimising the ANN’s structure and parameters and closely reviewing the dataset.

Hyper-parameters such as the confidence threshold could be optimised [C42]. The metric

results also suggest possible misannotations of objects that are being correctly identified, in-

dicating that some objects, like trunks, could be successfully detected by the model but were

not labelled in the ground truth data.

In the literature review, no publications were found that explored the application of Reti-

naNet ResNet 50 or SSD ResNet 50 FPN on heterogeneous devices. Therefore, a direct com-

parison with state-of-the-art results is not feasible. Although the results indicate that our ex-

periments were slightly slower than state-of-the-art findings, RetinaNet ResNet 50 is more

complex than YOLO and SSD MobileNets. Considering the fast inference times with compet-

itive evaluation performance rates, which at times are comparable to YOLO results from the

literature, we conclude that this work’s research is suitable for near real-time applications.

In the study conducted by Aguiar et al. [C47], the VineSet dataset was analysed using an

SSD object detection model that incorporated two backbone feature extractors, MobileNet

v1 and Inception v2, within a USB Coral Accelerator TPU. The outcomes were mAP scores of

66.96 % for MobileNet v1 and 55.78 % for Inception v2, notably achieved without consider-

ing the trunk’s class. The omission of the trunk’s class allows for a parallel with our results,

suggesting that including it might degrade performance metrics. Thus, it’s inferred that the

dataset’s limitations are being approached, necessitating a thorough review of labelling to

pinpoint potential misannotations. Additionally, Aguiar et al. citeCAguiar2021 explored the

optimal confidence score for metric optimisation through an inference threshold analysis,

whereas a standard confidence score of 30 % was employed here.

MobileNet architectures, designed for speed and mobile application efficiency, and
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Inception networks, which are simpler and faster than ResNet networks, showcased their

capabilities within a TPU. Specifically, performance rates of 158.98 FPS for MobileNet and

38.36 FPS for Inception were recorded. This comparison reveals a faster performance

compared to our results, although the distinction in network performance between a Google

Coral USB Accelerator Edge TPU and a Google Coral Dev Board TPU remains ambiguous. An

inferred average power consumption of 2.5 W for the USB stick was noted, excluding broader

computer maintenance and processing power requirements.

Furthermore, FINN models demonstrated noteworthy outcomes. Figures 3.40 to 3.45 de-

pict dataset images alongside instances of FPs and FNs. Analysis of these images indicates

that false detections frequently arose from confusion with parts of the vines’ trunks, while

missed detections often involved grape partials potentially mistaken for shadows by low-

resolution networks. For a comprehensive understanding of these errors, the application of

explainable artificial intelligence (XAI) techniques, as suggested by [273], is advised. Despite

visually lower performance metrics, the high inference speeds of FINN networks render them

suitable for real-time object classification in high frame rates, making them intriguing for at-

tention mechanisms within the proposed active perception architecture.

In terms of our findings, the TPU emerges as the superior choice when prioritising power

reduction, despite minor performance variations across evaluation metrics and a slower in-

ference speed. For applications balancing power consumption and inference speed, AMD-

Xilinx Kria KV260 shows promise. It’s crucial to acknowledge that both AMD-Xilinx Kria KV260

and AMD-Xilinx ZCU104 operate on a standard PetaLinux image from AMD-Xilinx29, which

activates all FPGAs’ resources, many of which may be unnecessary. Thus, a refined analysis

with an optimised PetaLinux image could offer a more accurate assessment of FPGAs’ power

consumption.

Finally, we explored a fixation mechanism for assessing the maturity stage of fruits, focus-

ing on the development and evaluation of two DL models for tomato detection and classifi-

cation. These models were compared against a developed model based on the HSV colour

space, which classifies fruits according to their colour/ripeness through images from two

datasets specifically collected for this purpose.

Overall, both DL models proved to be sufficiently generic to achieve successful tomato

detection. The performance was consistent across both the validation and test sets, with the

YOLO v4 model demonstrating promising outcomes and outperforming the SSD MobileNet

v2 model. Notably, the application of a filtering process based on a threshold significantly

benefitted only the YOLO v4 model. The SSD MobileNet v2 model displayed consistent results

irrespective of the confidence threshold, suggesting its suitability for use without a filtering

process. These models demonstrated the capability to detect tomatoes at various stages of

ripeness, even in complex scenarios involving occlusions, overlaps, and variations in lighting

conditions. Despite being one-stage detectors, which could potentially compromise accu-

29See Advanced Micro Devices, Inc. “PetaLinux tools.” (2022), [Online]. Available: https://www.xilinx.
com/products/design-tools/embedded-software/petalinux-sdk.html (visited on 08/05/2022).

https://www.xilinx.com/products/design-tools/embedded-software/petalinux-sdk.html
https://www.xilinx.com/products/design-tools/embedded-software/petalinux-sdk.html
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racy, the SSD MobileNet v2 and YOLO v4 models did not show a considerable loss in accuracy,

exhibiting good inference times. Combined with their precision and recall outcomes, these

models are viable for integration into real-time CV systems.

When comparing our results with those of other researchers, our models showed superior

performance to those presented by Yuan et al. [122], and Ruparelia et al. [137], which, despite

achieving high precision rates, failed to detect all relevant objects, resulting in an overall F1

score ranging between 60 % to 66 %. Our models were only outperformed by heavily modified

versions of the YOLO v3 and YOLO v3 Tiny models, as reported by Chen et al. [134], Liu et al.

[136], Lawal [138], and Xu et al. [117], achieving an F1 score consistently above 90 %. However,

it is important to note that most of these models were trained on a single class, disregarding

the fruit’s ripeness stage, and in some cases, were trained predominantly or exclusively on

images of red tomatoes, which are naturally easier to detect due to the stark colour contrast

with the background. To the best of our knowledge, the application of DL models for tomato

detection in greenhouse conditions with more than three classes has not been reported in the

literature. Hence, the results obtained for the SSD MobileNet v2 and YOLO v4 models, which

were minimally modified and trained on four classes using images from real greenhouse en-

vironments, are notably promising, especially considering the YOLO v4 model that achieved

an F1 score close to 86 %.

In terms of maturity classification capabilities, the DL models exhibited divergent be-

haviours. The classification results did not align with the detection outcomes, primarily due

to the models’ difficulties in distinguishing between intermediate classes (Turning and Light

Red). The colour similarity between these two classes could potentially interfere with the

classification accuracy. Moreover, the differentiation between these classes can be subjective

and imprecise even to the human eye, which is reflected in the annotation process and com-

plicates the models’ learning process. Nevertheless, both models achieved impressive results

in classifying green and red tomatoes.

As an alternative approach to maturity classification, an HSV colour space model was pro-

posed. This model excelled in classifying green tomatoes but faced challenges in distinguish-

ing between the ‘Turning Red´ and ‘Light Red’ classes. This issue might stem from the use

of a Gaussian mixture model, an iterative algorithm that is not optimal and can yield varying

results in boundary cases based on initial assumptions. Despite these challenges, the HSV

colour space model outperformed the SSD MobileNet v2 model significantly and approached

the performance of the YOLO v4 model, especially in terms of Balanced Accuracy. The re-

sults are particularly noteworthy considering that the DL models required training on a large

dataset (7393 images), whereas the HSV colour space model was developed using only 40 im-

ages (10 from each class). The simplicity and intuitiveness of the proposed model, along with

its ability to adjust the number of classes and modify confidence thresholds for each class,

present distinct advantages.

Sorting fruits based on their ripeness stage is primarily associated with post-harvest pro-

cesses. Consequently, most studies on fruit classification occur in structured environments,
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akin to those in processing industries after harvest. The only significant paper evaluating the

ability of DL models to classify tomatoes is by Mutha et al. [140], who achieved an average

accuracy of 94.67 % using a YOLO architecture for classifying three distinct tomato classes.

However, the tomato images used in this study do not represent the agricultural environment

broadly, nor a greenhouse specifically, and the test set comprised only 23 images. In terms of

more traditional methods, Benavides et al. [105] reached an accuracy of 77 % by calculating

the aggregated per cent surface area below certain Hue angles for classifying tomatoes into six

ripening stages. Utilising the HSV colour space to classify tomatoes into five classes, Gupta

et al. [114] proposed a colour histogram matching method, and Malik et al. [106] applied a

K-Nearest Neighbour approach, achieving accuracies of 97.20 % and 100 %, respectively. De-

spite these studies showing promising results, they were all conducted with images of toma-

toes detached from the plant, in artificial settings with stable and uniform backgrounds. This

highlights the novelty of our work, which was conducted with images from a real greenhouse

environment, focusing on evaluating both the detection and classification of tomatoes at dif-

ferent ripeness stages.

In summary, while DL models excelled in the detection task, they faced challenges in clas-

sification, with the HSV colour space model surpassing the SSD MobileNet v2 model. Each

model has its pros and cons: DL models are more demanding in terms of time and computa-

tion but excel in complex scenarios, a capability that significantly impacts the performance of

simpler methods like the HSV colour space model. An innovative solution could be to modify

and combine a DL model with the proposed HSV colour space model through ensemble mod-

elling to develop a framework that can accurately detect and classify a larger variety of fruits

without substantial accuracy loss. Efforts in this direction include the study by Ko et al. [275],

proposing a novel method for classifying tomato ripeness through multiple streams of CNN

and stochastic decision fusion. Yet, this study was also conducted in an artificial environ-

ment, highlighting an ongoing gap in applying these models in real agricultural settings. Our

publicly available datasets further contribute to scientific advancement, offering resources to

train and develop more precise visual perception solutions for use in greenhouse or vineyards

contexts.

3.5 Conclusions

In this chapter, we addressed the challenge of detecting and identifying fruits in complex

scenarios within cultivar environments. To effectively explore this topic, we developed var-

ious datasets of agricultural objects, grouped by their agricultural proximity. These include

the AgRobTomato and RPiTomato datasets, which comprise RGB images of tomatoes at dif-

ferent stages of ripeness, and the VineSet and RG2C datasets, featuring RGB images of grape

bunches and vine trunks.

For these datasets, we experimented with different DL models, all based on the same SSD

and YOLO architectures. We tested various backbones for these architectures, each with dif-
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fering levels of complexity. The lighter backbones, MobileNet v2 and Inception v2, demon-

strated superior performance, although ResNet 50 model also showed promise. The YOLO

v4 Tiny model matched the performance benchmarks reported in the literature, offering ex-

cellent results and rapid inference speeds. This study underscores the necessity of develop-

ing and maintaining specialised datasets for agricultural applications due to the specific de-

mands of the environment and the inadequacy of general-purpose datasets, such as the OID,

in detecting fruits and other objects in cultivar settings.

In addition to having specialised models for detecting fruits and other objects in culti-

vars, it is essential to have efficient and dedicated hardware to process these complex mod-

els in robotic systems. We evaluated a range of heterogeneous devices. TPUs are noted for

their low power consumption, small size, and efficiency but have limitations in compatibil-

ity with certain operations. As a result, FPGAs emerge as a viable alternative, offering a fully

programmable system across different levels. Furthermore, in contexts of classification, FP-

GAs can outperform other devices with very small models, capable of inferring thousands of

images per second. Additionally, in inference scenarios, FPGAs are the most power-efficient

devices, with their standby power consumption optimisable by disabling certain features and

peripherals.

Given the simultaneous detection of multiple objects, fixation mechanisms are crucial

in selecting the most accessible fruits. Algorithms for assessing ripeness assist in identifying

fruits ready for harvest. In this evaluation, both DL models and colour feature algorithms

proved equally effective. However, the use of colour feature algorithms with a mixture of

Gaussians required fewer images and offered more predictable modelling and easier calibra-

tion adjustments.

With a comprehensive system capable of detecting fruits in a robotic framework, the sub-

sequent step involves integrating this system with a harvesting mechanism. This integration

aims to precisely detect the 3D positions of fruits and guide a manipulator harvester to effi-

ciently harvest them. That can be achieve through active perception strategies.
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Chapter 4

Towards active perception

In agriculture, tasks such as fruit monitoring or harvesting necessitate the accurate percep-

tion of objects’ spatial positions. However, RGB-D cameras face limitations in open-field environ-

ments due to lighting interferences. In this study, we explored the application of Histogram Fil-

ters (Bayesian Discrete Filters) for estimating the position of fruits’ in the tree. Additionally, we de-

veloped an observability optimiser to enhance the autonomy of the MonoVisual3DFilter, making

it more active and aware of its environment. An enhancement of the observability optimiser, in-

corporating Kalman filters, granted it autonomous perception capabilities for estimating the fruit

positions. The algorithms and solutions were primarily evaluated in a simulation environment,

although some laboratory tests were also conducted.

The current chapter also comprehends studies in press for scientific journals, namely [C44],

and a submitted conference paper [C45].

Similar to the previous chapter, this chapter adheres to the IMRaD protocol.

4.1 Introduction

Until now, our focus has been primarily on detecting fruits, specifically tomatoes and

bunches of grapes, within agricultural settings. However, for effective harvesting, it is cru-

cial to estimate their 3D positions accurately.

In the section 2.6.2, a thorough review of the literature is performed towards assessing

valid solutions to estimate the position of the objects in the 3D space. The most technologi-

cally advanced works use RGB-D sensors that provide all the information directly. However,

these sensors usually malfunction in agricultural scenes because of natural interferences.

Therefore, using monocular sensors equipped with predictable algorithms could be an ap-

proachable solution.

As reviewed in the same section, Bayesian Histogram Filters are suitable for identifying

the 3D position of objects without requiring detailed models. Therefore, we applied the his-

togram filter to identify the 3D position of tomatoes in a testbed using a monocular camera

mounted on a robotic arm, using an eye-in-hand model, in a solution we termed MonoVisu-

al3DFilter. Initially, the arm used fixed multi-viewpoints to observe the tomatoes from various

perspectives.

101
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Given the dependence on fixed viewpoints, we developed the best viewpoint estimator

(BVE) in the second stage to optimise fruit observation for a better assessment of their real

3D position. Additionally, the BVE was enhanced with an extended Kalman filter (EKF) that

iteratively refines the fruit’s position for the optimisation of the next viewpoint.

This work explores the use of Bayesian Histogram Filters for estimating the 3D position

of objects within the reach of a robotic manipulator using a monocular camera. The imple-

mented algorithm underwent evaluation in both simulated and testbed conditions in the lab-

oratory, focusing on fruit detection. Subsequently, efforts were made to enhance the MonoVi-

sual3DFilter by incorporating an active perception strategy that enables autonomous target

control for the manipulator using the BVE, which, when supported by an EKF, was capable of

singularly estimating the fruit position. The contributions of this current work include:

• Introducing and evaluating the MonoVisual3DFilter;

• Applying histogram filters to detect the centre position of objects accurately;

• Utilising the MonoVisual3DFilter for real-world applications, such as detecting fruits

within the canopy of plants;

• Investigating the impact and benefits of various kernel types;

• Expanding the MonoVisual3DFilter to autonomously select optimal viewpoints; and

• Implementing an additional estimator for the 3D position of fruits based on the EKF.

4.2 Materials and Methods

4.2.1 MonoVisual3DFilter

4.2.1.1 Real data and simulation

The development and testing of the MonoVisual3DFilter algorithm took place in two dis-

tinct settings: a simulated environment and a laboratory testbed, aiming to mimic near real-

world conditions. Both settings utilised a monocular camera with fixed viewpoints.

A basic simulation environment was created using the Ignition Gazebo Simulator1. This

setup included six spheres, with diameters of 5 cm and 10 cm, to evaluate the algorithm’s per-

formance and facilitate its implementation (Fig. 4.1). A bounding box camera was incorpo-

rated into the scene to detect the objects and assist the position estimation algorithm. During

the MonoVisual3DFilter’s execution, the camera was strategically moved to predetermined

viewpoints to test and validate the estimation process. The camera employed object detec-

tion algorithms to identify the visible portions of the objects using bounding boxes.

1See Open Robotics. “Gazebo.” (2023), [Online]. Available: https : / / gazebosim . org/ (visited on
05/12/2023).

https://gazebosim.org/
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(a) (b)

Figure 4.1: Simulated environment to validate the histogram filter effectiveness. Green
spheres are the objects being detected, representing the tomatoes, and the black box is the
bounding box camera looking at the spheres.

For the laboratory testbed, designed to replicate near real-world greenhouse conditions,

plastic leaves and tomatoes were used (Figures. 4.2a and 4.2b). An OAK-1 camera2 (Figure

4.2d) served as the bounding box camera, attached to the 6 DoF Robotis Manipulator-H (Fig-

ure 4.2c). This camera processed an object detection model, specifically trained to recognise

tomatoes using the YOLO v8 tiny, based on a dataset by Magalhaes et al. [C42, C50]and section

3.2.1.1, and including samples of the plastic tomatoes from various angles. The manipulator

moved to fixed viewpoints to ensure the visibility of the tomatoes, mounted on the mobile

platform AgRob v16 from INESC TEC (Fig. 1.2). However, the 3D positioning of the tomatoes

was calculated relative to the base frame of the manipulator.

The OAK-1 is a comprehensive system for bounding box cameras, designed by Luxonis

Holding Corporation, featuring a single 12 MP RGB camera module. For on-system object

detection, the camera module connects to the OAK-SoM3. The entire camera system utilises

USB-C for device connectivity. The OAK-SoM is a SoM engineered for integration into both

high-level and low-power systems, capable of processing ANNs. This camera module was

integrated into the AgRob v16 robot (Fig. 1.2).

(a) Testbed with the toma-
toes (b) Plastic tomato (c) Manipulator-H (d) OAK-1 Camera

Figure 4.2: Simulated testbed in the laboratory to essay the histogram filter algorithm

2Luxonis Holding Corporation. “OAK-1.” (2023), [Online]. Available: https : / / docs . luxonis . com /

projects/hardwae/en/latest/pages/BW1093/ (visited on 09/26/2023).
3See Luxonis Holding Corporation. “OAK-SoM.” (2023), [Online]. Available: https://docs.luxonis.com/

projects/hardware/en/latest/pages/BW1099/ (visited on 09/26/2023).

https://docs.luxonis.com/projects/hardwae/en/latest/pages/BW1093/
https://docs.luxonis.com/projects/hardwae/en/latest/pages/BW1093/
https://docs.luxonis.com/projects/hardware/en/latest/pages/BW1099/
https://docs.luxonis.com/projects/hardware/en/latest/pages/BW1099/
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This approach ensures that the MonoVisual3DFilter algorithm is rigorously evaluated un-

der controlled conditions, facilitating robustness and reliability in object detection tasks.

4.2.1.2 Histogram Filter

Histogram filters have been extensively utilised in literature for the self-localisation and

navigation of mobile robots [179, 180]. In this study, we plan to adapt histogram filters for de-

termining the 3D position of tomatoes relative to the manipulator’s base frame, an approach

we refer to as MonoVisual3DFilter.

The histogram filter is a computationally demanding algorithm capable of estimating the

relative positions of objects by calculating probabilities across a discretised space. Subse-

quently, it combines the probabilities from different viewpoints to deduce the localisation

and the extent of the regions of interest (Figure 4.3).

Figure 4.3: Intersection between multiple viewpoints in 2D plane

Histogram filters are essentially discrete Bayes filters applied to a continuous state space,

as described by Thrun et al. [178].

The continuous state space is decomposed into a finite set of regions. Equation 4.1 out-

lines the discretisation of the state space, where X t represents the random variable for the

state of detected objects at time t . The term dom(X t ) defines the state space, encompassing

all possible values of X t . A simple method to discretise a continuous state space is by using a

multidimensional grid, with x k ,t denoting each grid cell.

dom(X t ) =x 1,t ∪x 2,t ∪···∪x K ,t (4.1)

To minimise computational efforts, only a portion of the state space is discretised, partic-

ularly considering the manipulator’s reachability. Upon detecting a region of interest with the

manipulator’s camera from the initial viewpoint, the space behind the camera is segmented

using a grid scheme. The probable space around the object is considered to be twice the ma-

nipulator’s reach. This reachability of the manipulator provides sufficient margin to identify

and assess some fruits within its range. The 3D decomposition is centred on the camera in

the y O z plane, i.e., at (0,0) in the camera’s frame, and extends outward by the manipulator’s

reachability radius in O x . Once segmented, the discrete state space is fixed, and only Pdom(X t )

undergoes updates.
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Operating the histogram filter requires shifting the camera to various strategic viewpoints

and refreshing the probabilities grid. At the onset of space decomposition, a probabilities ma-

trix associated with each cell is initialised to one, implying that initially, the object of interest

could be anywhere within the decomposed space, i.e., dom([X0]) = [1...1].

To estimate the positions of objects, dom(X t ) is updated at each new viewpoint. Each

cell, xi ,t , within the decomposed state space, is converted from the manipulator’s base frame

to the image’s frame. The probability of an object being within a given cell, xi ,t , considering

the viewpoint, is calculated as shown in (4.2). The revised probability of an object’s presence

within cell xi ,t is determined by (4.3).

p (x i ,t |v i e w p o i n t k ) =
1

N

N
∑

j

p (x i ,t |b b ox j ,v i e w p o i n t k ) (4.2)

p (x i ,t ) =p (x i ,t |v i e w p o i n t k ) ·p (x i ,t−1) (4.3)

For p (x i ,t |b b ox j ,v i e w p o i n t k ) in (4.2), a kernel function was devised to localise ob-

jects within the state space. We experimented with two kernel functions: square and Gaus-

sian. The square kernel, when applied to each bounding box, assigns a probability of one if

the transformed point falls inside the bounding box, and zero otherwise, as shown in (4.4).

This binary approach asserts that a point inside a bounding box likely indicates an object’s

presence; if not, then the object is absent.

p (x i ,t |b b ox j ,v i e w p o i n t k ) =







1 if inside bounding box

0 otherwise
(4.4)

To temper the aggressive behaviour of the square function, we explored the bidimensional

Gaussian function, as shown in equation (4.5). This function provides a smoother effect on

the borders of the bounding box and affects some cells x i ,t outside the bounding boxes. Thus,

a Gaussian function is more suitable for handling irregular objects and noise. In equation

(4.5), (x0, y0) represents the centre of bounding box j in the sensor’s frame, and (x , y ) denotes

the position of each cell x i ,t in the sensor’s frame. The coordinates in the image’s frame are

projected using a projection model described in section 4.2.1.3. The standard deviation val-

ues (σx ,σy ) are set to half the size of the bounding box j . These values were determined

experimentally and yielded reasonable results. Utilising the Gaussian kernel ((4.5)) for object

position estimation involves equation (4.2), which is akin to a mixture of Gaussians, consider-

ing the camera detects multiple objects. This mixture of Gaussians creates a function that be-

comes smoother with more Gaussians in the mixture. To counteract this effect, a normalised

version of the mixture of Gaussians, as detailed in equation (4.6), is employed to accentuate

the detected objects. Furthermore, the updated state space dim(X t ) is also normalised at the

conclusion of each histogram filter iteration.

Equations (4.5) and (4.6) are crucial for understanding the process. Equation (4.5) cal-
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culates the probability of a cell x i ,t based on its relation to the bounding box b b ox j and

the viewpoint v i e w p o i n t k . Equation (4.6) then normalises this probability across differ-

ent viewpoints to ensure distinct objects are highlighted effectively.

p (x i ,t |b b ox j ,v i e w p o i n t k ) =exp

�

−
(x −x0)

2

2σ2
x

−
(y − y0)

2

2σ2
y

�

(4.5)

p (x i ,t |v i e w p o i n t k ) =
p (x i ,t |v i e w p o i n t k )

max(p (x i ,t |v i e w p o i n t k ))
(4.6)

Algorithm 1 outlines the steps for updating the weights of cells during the histogram filter-

ing process. It involves iterating through each viewpoint, transforming cell coordinates from

the mainframe to the camera’s and then to the sensor’s frame, and calculating the probability

of each cell being within a bounding box. These probabilities are then normalised to adjust

the overall probabilities matrix, ensuring an accurate representation of detected objects from

various viewpoints.

Data: d e c o mp o s i t i o n_g r i d , p r o b a b i l i t i e s _ma t r i x , b o und i ng _b o x e s

Result: p r o b a b i l i t i e s _ma t r i x

for each viewpoint do

for x i ,t ,p (x i ,t ) in d e c o mp o s i t i o n_g r i d , p r o b a b i l i t i e s _ma t r i x do

c e l l _c a me r a← transforms cell from the mainframe to camera’s frame;
c e l l _s e n s o r ← c e l l _c a me r a in the sensor’s frame;
(u ,v )← c e l l _s e n s o r in the image’s frame;
p (xi ,t |viewpointk )← 0 ;
for b b ox in b o und i ng _b o x e s do

p (x i ,t |v i e w p o i n t k )←p (x i ,t |v i e w p o i n t k )+
1

N
×p (x i ,t |b b ox );

end

end

p (x t |v i e w p o i n t k )←normalise(p (x t |v i e w p o i n t k ));
p (x t )←p (x t )×p (x t |v i e w p o i n t k );
p (x t )←normalise(p (x t ));

end

Algorithm 1: Histogram filter – updating weights

4.2.1.3 Camera Projection Model

When applying the histogram filter, we divided the state space into a finite grid. To ac-

curately estimate the object’s 3D position, we manoeuvred the detection camera around the

object and the segmented state space, enabling visualisation from multiple angles. Figure 4.4

illustrates a state space’s decomposition. The camera detects an object, and then the Mono-

Visual3DFilter decomposes the state space around it. The points in the decomposed are con-

verted to the camera’s frame. If they fall outside the detected object, they are discarded, re-

maining the points converted to inside the object’s detection.
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Figure 4.4: Decomposition of the state space and the intersection of the points in this space
and the camera’s detection.

Object detection with the detection camera necessitates a reliable projection model to

predict the object’s 3D location by converting between the 3D space coordinates and the im-

age frame. We utilised the Pinhole model to transform the 3D space coordinates into the

image frame.

Acknowledging the 3D space points in the camera’s frame, we must translate them into

the sensor’s frame before projecting them onto the image frame. Although they share the

same origin, their orientations differ. The sensor’s frame orientation, as shown in Fig. 4.5,

can be described using Euler angles, specifically Euler(YZX)=(y ,z , x )= (90◦, −90◦, 0◦), which

equates to the quaternion q = (x , y ,z ,w ) = (−0.5,0.5,−0.5,0.5).

x

z

y

z

x

y

Figure 4.5: Conversion between the camera’s and sensor’s frames (blue – sensor’s frame; black
– camera’s frame).

The transformation from the sensor’s frame to the image’s coordinates utilises the intrinsic

parameters matrix, as defined in equation 4.7. This matrix accounts for the image’s width

(w ) and height (h), along with the camera’s focal length ( f ). The focal length, influenced by

the camera’s horizontal field of view (HFOV) and the image’s width, can be determined by

equation 4.8.

(u ,v,1) =







f 0 w
2

0 f h
2

0 0 1





 ·







x
z
y
z

1





 (4.7)

f =
0.5×w

tan
�

0.5×H F OV ×
π

180

� (4.8)
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However, this modelling approach primarily applies to ideal scenarios, such as simula-

tions. For practical applications with the OAK-1 camera, an additional calibration step was

required to estimate the intrinsic parameters accurately. For this purpose, we used the Kalibr

software [279].

4.2.1.4 Objects positioning

After executing the histogram filter from multiple viewpoints, the state space dom(X t )will

exhibit several clusters of points. Given the number of objects in the scene, as determined

by the detection camera, we can employ the k-means algorithm to group these points and

calculate the centre of each cluster.

The k-means algorithm aims to cluster the various points within the discrete state space

by minimising the geometric distance between points and the cluster’s centre, as defined

in the equation (4.9). This equation focuses on minimising the Euclidean distance between

points and µ j , the centre point of each cluster in A.

n
∑

i=0

min
µ j ∈A
(||x i ,t −µ j ||

2) (4.9)

Following the k-means clustering, the state space should contain as many point clouds as

objects detected by the detection camera. The computation of the centres of these clouds, to

determine the positions of the detected objects, can be approached in two ways:

1. computation of the geometric centre of the cloud; or

2. computation of the weighted centre of the cloud.

The geometric centre of each point cloud is the Euclidean centre µ j minimised during

the k-means algorithm for equation 4.9. In addition to the geometric centre, the k-means

algorithm also returns the points, x i ,t , that belong to each cloud, Sj . Given the state of each

element of the state space dom(X t ) at the conclusion of the histogram filter, each element

x i ,t is assigned a weight, wi . Thus, the weighted centre is the weighted average, as shown in

equation (4.10), of the coordinates of x i ,t that belong to the set Sj .

µ̂ j =

�
∑N

i wi ·xi ,t 1

N

∑N
i wi ·xi ,t 2

N

∑N
i wi ·xi ,t 3

N

�T

∀x i ,t ∈Sj (4.10)

4.2.1.5 Experiments

Three essays were performed in different environments to validate the effectiveness of the

MonoVisual3DFilter.

In the first scenario, we utilised the Gazebo simulator to craft a scene populated with mul-

tiple spheres to estimate their positions (see Figure 4.1). We employed a bounding box camera

devoid of noise, facilitating the validation of the filter’s actual performance free from external
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artefacts or noise. Additionally, we executed another essay where we introduced Gaussian

noise. This noise randomly altered the position and size of the bounding box for detected

objects, as well as the success rate of object detection. Since we did not equip the simula-

tor with a manipulator, the bounding box camera had increased flexibility in setting its pose.

Therefore, we adjusted the camera’s pose to ensure the visibility of the spheres. Figure 4.6

showcases the camera’s view at each pose. Initially, the camera is positioned straight towards

the spheres (Figure 4.6a). Subsequently, the camera is moved down and left, tilting upwards

(Figure 4.6b), and finally, it is moved up and right, angling downwards back to the initial pose

(Figure 4.6c). This camera setup was maintained for both simulation experiments.

(a) (b) (c)

Figure 4.6: View of the spheres by the bounding box camera at each fixed viewpoint. The
green square boxes around the spheres are the bounding boxes of the detected spheres by the
bounding box camera.

In the third essay, we deployed a realistic testbed in a laboratory to test the algorithm un-

der near-real-world conditions, as illustrated in Figure 4.2). The testbed was composed of

artificial leaves and plastic tomatoes, simulating a realistic environment. The tomatoes were

suspended among the leaves. To determine the baseline position of the tomatoes within the

testbed, we relied on the manipulator’s kinematics. For each tomato, the manipulator end-

effector was moved to the fruit, and the end-effector’s position was recorded. This position

relative to the manipulator’s base frame served as the baseline for the tomato’s location. Like

the simulation essays, the bounding box camera was adjusted to three fixed poses to ensure

tomato visibility. Unlike the simulation essays, the testbed involved conducting several exper-

iments, ranging from localising one to three tomatoes simultaneously, totalling ten tomatoes

and sixty measurements. Figure 4.7 illustrates the visibility of the tomatoes through the OAK

camera at each selected pose for the various experiments.

To better evaluate the histogram filter’s performance in estimating object positions, we ex-

tracted several error metrics, namely the mean absolute error (MAE) (4.11), the mean square

error (MSE) (4.12), the root mean square error (RMSE) or standard deviation (4.13), and the

mean absolute percentage error (MAPE) (4.14). In these equations, µ j represents the actual

centre of the object for cluster Sj , and µ̂ j is the estimated centre using the aforementioned

methods for cluster j up to the maximum number of clusters M .
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(a) (b)

..

(c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)
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(p) (q) (r)

Figure 4.7: View of the tomatoes in the testbed at each pose of the OAK-1 camera. The blue
squares around the tomatoes are the detected tomatoes by the bounding box camera OAK-1
using a custom-trained YOLO v8 tiny detector. Inside each bounding box are the detected
class (tomato) and the detection confidence. Each row is an experiment, in a total of six ex-
periments, and each figure contains the number of tomatoes being detected.

MAE (µ j ,µ̂ j ) =
1

N ·M

N
∑

i

M
∑

j

|µi j −µ̂i j | ∀ j ∈N : {1..M } (4.11)

MSE (µ j ,µ̂ j ) =
1

N ·M

N
∑

i

M
∑

j

(µi j −µ̂i j )
2 ∀ j ∈N : {1..M } (4.12)

RMSE (µ j ,µ̂ j ) =

√

√

√

√

1

N ·M

N
∑

i

M
∑

j

(µi j −µ̂i j )2 ∀ j ∈N : {1..M } (4.13)

MAPE (µ j ,µ̂ j ) =
1

N ·M

N
∑

i

M
∑

j

�

�

�

�

µi j −µ̂i j

µi j

�

�

�

�
×100 ∀ j ∈N : {1..M } (4.14)

4.2.2 Best viewpoint estimator (BVE)

The position estimator MonoVisual3DFilter has a limitation in selecting the next best

viewpoint to perceive the fruits from a different perspective. This limitation affects the op-

timal estimation of the fruits’ positions. Probabilities theory proves that two orthogonal ran-

dom variables are uncorrelated [280, ch. 6]. Therefore, observing the fruits from orthogonal

positions to previous ones delivers a completely new perspective on the object and aids in

accurately estimating the position. To address this limitation, we intend to design an algo-

rithm called the best viewpoint estimator (BVE) that selects the next best pose and increases

the observability of the fruit.

To achieve this, we can set it as a statistical optimisation problem. We start with an initial

Gaussian distribution resulting from observing the fruit in the first position. Next, we select

the next viewpoint whose observation of normal distribution intersects with the current one

and minimises the resulting covariance of the Gaussian distribution. We use the product of

Gaussians (4.15) to establish a minimisation objective. In equation (4.15), Ni (µi ,Σi ) is a Gaus-

sian distribution with the index i ∈N of each observation viewpoint to the fruit.

N (µp ,Σp ) =N1(µ,Σ1) · ... ·Nn (µ,Σn ) (4.15)
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According to Petersen and Pedersen [281], we can divide the product of Gaussian distri-

butions (4.15) into two separate equations for the mean values and the covariance, as shown

in equations (4.16) and (4.17), respectively.

µp =Σp · (Σ1
−1 ·µ1+ ...+Σn

−1 ·µn ) (4.16)

Σp =(Σ1
−1+ ...+Σn

−1)−1 (4.17)

The fruit remains stopped in all positions, hanged on the tree. Therefore, the position

of the tomato, k , is always constant, µi = k . Based on this consideration, we can define to

optimise a function related to equation (4.17).

The camera’s covariance, Σc , is mostly a characteristic of the camera and is always con-

stant in the camera frame C . Thus, we can consider it as the camera’s observability noise in

its frame, as shown in equation (4.18), whereΣi j : i , j ∈{x , y ,z } are the elements of the matrix

and the variance or covariance for each axis.

Σc =







Σx x Σx y Σx z

Σx y Σy y Σy z

Σx z Σy z Σz z





 (4.18)

To relate the different observability noises between different poses, we need to state the

camera’s covariance matrix in the main’s frame W through equation (4.19). In this equation,

the matrix R W
C is a rotation matrix that relates the camera frame C to the main frame W .

Σn =R W
C Σc R W

C

⊺
(4.19)

The covariance matrix changes at each iteration of the algorithm, resulting from the com-

putation of equations (4.17) and (4.19). To generalise the system’s initial conditions, we con-

sider a generic covariance matrix, as shown in equation (4.20), as the result of the previous

states of the system. This generic covariance matrix is the result of all the covariance matrices

until k −1.

Σo =







Σo ,x x Σo ,x y Σo ,x z

Σo ,x y Σo ,y y Σo ,y z

Σo ,x z Σo ,y z Σo ,z z





 (4.20)

Rotation matrix As previously considered, the known covariance matrix,Σc , represents the

observability noise for the fruit in the camera frame. This frame is not static; it moves with

the camera’s movement relative to the fixed main frame. Therefore, it is necessary to establish

a rotation matrix that articulates the relationship between the camera frame and the main

frame. It is important to note that the camera’s translation is disregarded because it does not

affect the covariance.
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The figure 4.8 illustrates a potential relationship between the frames. O xC yC zC is the

camera’s frame, centred on the sensor, with the axis x C indicating the direction the camera

faces. For simplification, we assume that yC is always parallel to the plane defined by xW
OyW

.

This simplification is feasible because the covariance matrix is ideally symmetrical along the

axis x C , and the orientation of the other axes is not critical.

YW

ZW

XW

XC

YC

ZC

XT

Figure 4.8: Definition of the camera’s and the main’s frame.

Considering the estimated position of the tomato in the main frame, k̂ , the unit vector of

the axis x C , denoted as ex C
= ex W

C
, is calculated by (4.21), where c represents the position of

the camera in the main frame. With ex W
C

known, we can define each axis of the camera frame

in the main frame (x W
C , y W

C , and z W
C ) through (4.21), (4.22), and (4.23). In the equation (4.23),

ex W
c ,i

is the i th element of the vector ex W
c

. Each vector must be normalised for the rotation

matrix definition to yield the unit vectors. The rotation matrix R W
C , which relates the camera

frame to the main frame, is given by (4.24). In the equation (4.24), ex W
C

, ey W
C

, and ez W
C

are the

unit vectors of x W
C , y W

C , and z W
C , and x W , yW , and z W , respectively.

ex W
c
=

k̂ −c

||k̂ −c ||
(4.21)

y W
C =
�

−ex W
c ,2

ex W
c ,1

0
�⊺

(4.22)

z W
C =x W

C ×y W
C =







−ex W
c ,1
·ex W

c ,3

−ex W
c ,2
·ex W

c ,3

(ex W
c ,1
)2+(ex W

c ,2
)2





 (4.23)

R W
C =
�

ex W
C

ey W
C

ez W
C

�

(4.24)

Objective function We have designed a loss function to minimise the intersection of the

covariance matrices in the main frame. This loss function is based on the application of the

Gaussian intersection. The objective of the loss function is to compute a scalar value, which

can be achieved through two types of loss function: the first one is a dependency of disper-

sion, and the other is the maximum absolute covariance.



114 Towards active perception

For each observation pose, the intersection between two covariance matrices is given by

the formula in equation (4.25). To compute this equation, we need to compute three inverse

matrices, which is computationally demanding. To simplify this operation, we opted to use

the precision matrix (4.26), which is the inverse of the covariance matrix. The precision can

be simplified by a scalar characterising the whole matrix, the concentration, which is the de-

terminant of the precision (4.27). Through the properties of the determinant of matrices, we

know that the inverse of the determinant of the covariance matrix is equal to the determi-

nant of the inverse of the covariance matrix, det(A−1) = det(A)−1. Hence, we can define the

objective function as the dispersion, i.e., the inverse of concentration. Because the proposed

objective function has a very low magnitude, we scaled it to the logarithm scale (4.28). In

equation (4.28), P and Σn are dependent on ĉ , the next estimated position for the camera,

which we aim to optimise. Through the proposed strategy, we can reduce the computation

of the most complex inverse matrix, instead computing the inverse of a scalar.

Σu =(Σo
−1+Σn

−1)−1 (4.25)

P =Σo
−1+Σn

−1 (4.26)

c =det(P ) (4.27)

f (ĉ ) =ln

�

�

�

�

1

det P

�

�

�

�
= ln

�

�

�

�

1

det(Σn
−1+Σo

−1)

�

�

�

�
=−ln(det(Σn

−1+Σo
−1)) (4.28)

Alternatively, we can minimise the absolute maximum eigen value of the covariance ma-

trix if we have enough computing power to compute (4.25). While using this loss function,

we should remember that it is highly non-linear and whose derivative function varies at each

step because of the maximum function.

f (ĉ ) =max(|eig(Σu )|) (4.29)

We can use optimisation algorithms that can operate with non-linear restrictions and loss

functions to optimise both functions. For the current analysis, we opted to use an interior-

point algorithm [282] that has already been implemented in Matlab4.

In the following sections, we will observe that both loss functions can effectively estimate

the best observations for the objects. However, the loss function that minimises the absolute

maximum covariance (4.29) tends to deliver slightly better results and is faster to compute.

We also intend to effectively drive the camera to the objects to perform tasks while esti-

mating the fruit’s position. For that, we added an additional component to the loss function,

as illustrated in equation (4.31). The act(i ,a ,b ) is an activation function that, in this case, is

the sigmoid function (Fig. 4.30). This function activates the additional component, forcing

the camera to approximate the object. In this function, a and b are control hyper-parameters

4See The MathWorks, Inc. “MATLAB 9.14.0.2206163 (R2023a).” (2024), [Online]. Available: https://www.
mathworks.com (visited on 01/17/2024).

https://www.mathworks.com
https://www.mathworks.com
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that set the aggressiveness of the activation function and the set point for this function (i.e.,

the value of the function for 0.5), respectively. The figure 4.30 illustrated the effect of the sig-

moid activation function with varied a and a fixed b =20 – higher a values make the penalisa-

tion of the distance from the camera to the fruit faster. i is the procedure’s iteration number.

α,β are scale factors to adjust the intensity of the loss and activation functions, respectively.

Through this strategy, we can activate gradually the Euclidean error to the fruit according to

the evolution of the estimation procedure.

act(i ,a ,b ) =
1

1+e−a ·(i−b )
(4.30)

F (ĉ ) =α× f (ĉ )+β ·act(i ,a ,b ) · ||k̂ − ĉ || (4.31)
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Figure 4.9: Effect of the sigmoid activation function with b =20 and a = [0.2;2] in steps of 0.2

Restrictions The designed algorithm effectively estimates optimal camera positions to

maximise the visibility of the target fruit. However, it is essential to incorporate practi-

cal limitations to reflect the real-world scenario and the constraints of the environment.

Specifically, the camera’s placement must consider the physical space and the robotic arm’s

manoeuvrability.

Although theoretically, the camera could be positioned anywhere within the task space,

in practice, the robot manipulator’s working space limits its location. To address this, we have

decided that acceptable camera positions must fall within the robot’s operational area. For

simplicity, we have modelled this area as a sphere, as illustrated in the figure 4.10a, centred

at m with a radius of rm meters, thus the camera’s position ĉ must satisfy the condition in

equation (4.32).

((ĉ −m ) · (ĉ −m )⊺)− r 2
m ≤0 (4.32)

Additionally, the camera must not intrude into the space the fruit occupies. Given that
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we are estimating the fruit’s central position but not its exact volume, we will use an average

fruit radius rk , centred at k̂ (Fig. 4.10b). Therefore, the camera’s position must also adhere to

equation (4.33).

−((ĉ − k̂ ) · (ĉ − k̂ )⊺)+ r 2
k ≤0 (4.33)

Optimising the camera’s position also requires considering its orientation; it must be

aimed towards the fruit. Considering the camera’s conical field of view, we introduce a further

constraint ensuring the fruit is within this field. This is detailed in figure 4.10c and equation

(4.37), where H F OV represents the camera’s horizontal field of view. In this restriction, we

aim to constrain the angle formed by the vectors ec and x lim− ĉ to be inferior to H F OV /2.

ec =
k̂ − ĉ

||k̂ − ĉ ||
(4.34)

ec⊥ =
�

−ec ,2 ec ,1 ec ,3

�⊺

(4.35)

x lim=k̂ + rk ·ec⊥ (4.36)

0≥
x lim− ĉ

||x lim− ĉ ||
·ec −cos
�

H F OV

2

�

(4.37)

In a tomato greenhouse, where plants are aligned in rows, the robot must avoid crossing

these rows to prevent damage. This is managed by defining a restriction in equation (4.40),

modelling the plant rows as a planar boundary to keep the robot on one side, set at a distance

d meters from the fruit. The plane’s orientation is determined by the normal vector en plane
,

that represents the normalised vector of n plane. Because we only have a point in the plant

tree, we approximate the trees’ plane (Fig. 4.10d) by its normal vector, between the fruit and

the origin, placed in the manipulator’s base. With this approximation, we consider that the

robot is parallel to the fruits’ plants and aligned with the fruit. This is a rough approximation

that serves its purpose on a small scale, such as the one we are working on.

n plane=
�

k̂0 k̂1 0
�⊺

(4.38)

w =k̂ −d ·en plane
(4.39)

0≥en plane
· (ĉ −w ) (4.40)

Further constraints were introduced to accommodate the specific features of the manip-

ulator used, ensuring the chosen positions are feasible and the kinematics can be computed.

In addition to these constraints, further experiments were conducted using simplified

forms of constraints, focusing solely on the distance between the camera and the fruit. This

was defined by a range l ∈ [lmi n ,lma x ], as specified in equations (4.41) and (4.42).
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(a) Manipulator range constraint (b) Fruit volume

(c) Conical field of view of the camera

trees 

plane

(d) Camera cannot cross the fruits’ plant plane

Figure 4.10: Graphical explanation of restrictions

||ĉ − k̂ ||− lmi n <0 (4.41)

−||ĉ − k̂ ||− lma x <0 (4.42)

4.2.2.1 Fruit pose estimation using EKF

In our current approach, we approximate the initial location of fruit using a basic estima-

tion method that relies on their average dimensions. However, this method only provides a

rough estimation of the fruit that we may not rely on. Therefore, we propose a more robust

alternative that leverages an EKF to refine this estimation, working in conjunction with the

BVE for enhanced accuracy. We initialised the EKF with a rough estimation of the fruit’s posi-

tion, and then used the EKF to refine and improve the estimation of the fruit’s position. The

EKF method offers a progressive improvement in pinpointing the fruit’s coordinates within a

3D task environment.

For optimal performance of the EKF, it is crucial that the camera manoeuvres smoothly to

maintain a constant observation angle on the fruit. This continuous adjustment is essential

for iteratively refining the fruit’s positional estimate. To facilitate this, we enforce a constraint

in BVE, ensuring the camera’s movement towards the most advantageous subsequent view-
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point is within a specified radius, rd metres, as formalised in the equation (4.43).

||ĉk+1−ck ||− rd <0 (4.43)

The EKF is structured around two principal phases, as illustrated in Figure 4.11: prediction

and correction. The prediction phase anticipates the fruit’s location by considering both its

dynamics and expected movements. Subsequently, in the correction phase, the fruit’s posi-

tion is adjusted based on real-time observations made by a dedicated sensor, thereby aligning

the estimated coordinates with actual measurements.

Start

Prediction
Keeps the position of the fruit

Increases the estimation covariance

Correction
Corrects the estimation of the fruit
based on camera measure

Reduces the estimation covariance

Figure 4.11: Diagram of the EKF applied.

Prediction During this phase, we will be estimating the position of the fruit based on its

dynamics. However, since the fruit is not expected to have any dynamics, it should maintain

its pose. Therefore, the predicted position of the fruit will be the same as its previous position,

as stated in equation (4.44). Additionally, we must propagate the covariance estimation error,

as outlined in equation (4.45). In this equation, Q k is the covariance of the prediction noise

associated to the estimation variable.

x̂ k |k−1= f (x̂ k−1|k−1,u k−1) = I · x̂ k−1 (4.44)

Pk |k−1=Fk ·Pk |k−1 ·F
⊺

k
+Q k = Pk |k−1+Q k (4.45)

Fk =
∂ f

∂ x

�

�

�

�

x̂ k−1|k−1,u k

=1 (4.46)

Correction In this scenario, it is assumed that the camera is observing the fruit. After a pre-

diction phase, a correction phase follows where the camera pose is adjusted (4.54), based on
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measures obtained from the camera sensor (4.47). This correction also corrects the covari-

ance propagation error (4.52). The estimated position of the fruit for each instance is rep-

resented by x̂ , and a random noise variable ϵ is added to simulate environmental noise (in

real-world conditions, this value is realistically measured). R k is the covariance associated to

the observation noise.

h (x̂ k |k−1) =||x̂ k−1−c || (4.47)

z k =||k −c ||+ϵ ·
p

σx x (4.48)

Hk =∇h (x̂ k |k−1) =
x̂ k−1−c

||x̂ k−1−c ||
(4.49)

K k =Pk |k−1 ·Hk
⊺ · (Hk ·Pk |k−1 ·Hk

⊺+Rk )
−1 (4.50)

Rk =σx x (4.51)

Pk |k =(I −K k ·Hk ) ·Pk |k−1 (4.52)

ỹk =z k −h (x̂ k |k−1) (4.53)

x̂ k |k =x̂ k |k−1+K k · ỹk (4.54)

(4.55)

4.2.2.2 Experiments

In our study, we conducted several simulations in Matlab to validate our designed algo-

rithms. These simulations were structured around the goal of optimising camera positioning

to minimise the observation covariance, denoted as Σ.

Initially, we explored scenarios where the camera positions that minimiseΣ are orthogo-

nal, considering only the BVE without any constraints.

Subsequently, we expanded our simulations to include simplified constraints, specifically

focusing on maintaining the camera within a defined distance from the target object (the

fruit). These constraints are mathematically represented as (4.42) and (4.41). For example,

we stipulated that the camera must be positioned within (1.0±0.1)m of the fruit. Regarding

the hyper-parameters of the other constraints, d = 0.1m; the working space was centred in

the first joint of the Robotis Manipulator-H, m =
�

0 0 0.159
�⊺

m and radius of rm =0.645m.

The amount of restrictions was sequentially increased in our model until those that en-

sured the robot’s kinematics were valid. We specified geometric constraints related to the

camera and manipulator’s operational space, and accounted for realistic observation covari-

ances through a diagonal covariance matrix with increased covariance along the x -axis.

To further refine our observations, we integrated an EKF with the BVE, considering a maxi-

mum moving step of 0.02 m, enabling continuous adjustment of the fruit’s estimated position

in the 3D space. This integration was tested under various conditions, including different loss

functions designed to optimise the camera’s positioning.

To systematise the different experiments, we define the following protocol:
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E2.1 For this experiment, we used the dispersion-based loss function (4.28) to the BVE. To

restrict the BVE’s behaviour, we limited the position of the camera between (1.0±0.1)m

to the fruit, (4.41) and (4.42);

E2.2 In this essay, we repeated the previous essays, but we also considered the restriction

(4.32) that assures that the camera is inside the manipulator’s working space. So, be-

sides the (4.28) loss function, we consider the restrictions (4.41), (4.42), and (4.32);

E2.3 In this experiment, we consider the dispersion-based loss function (4.28) and the re-

strictions (4.32), (4.33), and (4.37). Restriction (4.33) ensures that the camera’s position

is outside of the area used by the tomato, and the restriction (4.37) ensures that the

camera is always looking to the tomato and it fits in its visible area;

E2.4 This experiment considers the restrictions and the loss function of E2.3 and adds the

restriction (4.40), which ensures that the camera sensor never crosses the wall defined

by the different aligned plants;

E2.5 This experiment repeats the previous experiment, adding the kinematics constraints,

ensuring that the camera’s pose is always a valid pose for the manipulator;

E2.6 Repeats the experiment E2.1, considering the loss function (4.29), based on the min-

imisation of the maximum covariance, instead of the dispersion-based loss function

(4.28);

E2.7 Repeats the experiment E2.2, considering the loss function (4.29);

E2.8 Repeats the experiment E2.3, considering the loss function (4.29);

E2.9 Repeats the experiment E2.4, considering the loss function (4.29); and

E2.10 Repeats the experiment E2.5, considering the loss function (4.29).

To evaluate our algorithm’s performance, we compared it against the MonoVisual3DFilter

using metrics such as MAPE, MAE, RMSE, and MSE.

4.3 Results

In the preceding discussion, we set three distinct experiments to evaluate the MonoVi-

sual3DFilter. Two of these experiments were conducted in a virtual environment, while the

third occurred within a controlled laboratory setting designed to simulate real-world condi-

tions. The evaluation of the MonoVisual3DFilter’s performance leveraged various error met-

rics, including (4.11), (4.12), (4.13), and (4.14). For each trial, the camera and manipulator

were positioned strategically to ensure constant visibility of the fruits, and we systematically

explored all positional permutations. This approach yielded six distinct estimations for each
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tomato within every experiment, with the error calculated based on the deviation from the

actual position of each tomato.

The first experiment utilised a simulation environment to ascertain the 3D locations of

green spheres, as depicted in Figure 4.1, without introducing any noise factors. Throughout

this process, the bounding box camera adopted various positions to capture and integrate

these locations. Each camera position involved adjusting the state space to either consoli-

date or refine the presence of objects, guided by the chosen kernel. We compared two kernel

types: a square kernel (Figure 4.12) and a Gaussian kernel (Figure 4.13). Although visually sim-

ilar in performance, the Gaussian kernel offers two adjustable hyper-parameters that provide

greater control over the kernel’s dimensions and the precision of object positioning, thereby

enabling more nuanced filtering. For this specific experiment, we deployed a 2D Gaussian Fil-

ter characterised byN (0,size/2), where ‘size’ denotes the object’s width or height. The results,

illustrated in Figure 4.14, highlight the comparative error rates using square versus Gaussian

kernels, alongside the geometric centres determined through the k-means algorithm and the

weighted centres derived from the histogram filter’s output. The findings suggest that em-

ploying a Gaussian kernel with weighted centre estimation yields superior accuracy.

(a) (b) (c) (d)

Figure 4.12: Progression of the Histogram filter in simulation detecting six spheres using a
square kernel. (a) Initial state space decomposition; (b)-(d) Detection outcomes from suc-
cessive viewpoints.

(a) (b) (c) (d)

Figure 4.13: Histogram filter iterations in simulation for six sphere detection using a Gaussian
kernel,N (0,0.2). (a) Initial state space decomposition; (b)-(d) Detection results from consec-
utive viewpoints.

In our experiments, we introduced variability into the simulation by altering the bound-
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Figure 4.14: Simulation-based sphere position estimation error without noise.

ing box’s centre and dimensions, as well as incorporating random deletions. The outcomes of

these manipulations are illustrated in Figure 4.15. To modify the bounding box’s centre and

size, we applied a Gaussian distribution noise withN (0,0.05). Additionally, we applied a fail-

ure detection rate of 2 % for the bounding box. The Gaussian kernel, particularly when using

a weighted estimation for the spheres’ centre, exhibited superior performance.

Moreover, this kernel proved more robust and accurate than the square kernel. While the

histogram filter’s behaviour in each pose mirrored that of our prior study, an increase in noise

was noted. To mitigate this, we adjusted the Gaussian kernel toN (0,size/3), ensuring a more

stable filter. This adjustment was the minimum required to prevent any loss of fruits and

avoid overly sparse point clouds that could intersect with those of other fruits.
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Figure 4.15: Error in estimating the position of the spheres in simulation with added noise.

The series of experiments demonstrated a notable success, with an MAE under 1 cm. Con-

sequently, we proceeded to test the algorithm in a laboratory setting. Figure 4.16 showcases

the box plot error of the MonoVisual3DFilter in this environment, utilising the Robotis Ma-

nipulator-H and the OAK-1 camera. An error analysis is detailed in the table 4.1, incorpo-

rating the average Euclidean error distance and the MAPE for a comprehensive evaluation of
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the MonoVisual3DFilter’s feasibility. Throughout the camera’s various positions, the visibility

of all tomatoes was maintained (Figure 4.7). The laboratory test comprised six experiments

designed to simultaneously estimate the positions of one to three tomatoes (as depicted in

Figure 4.7), totalling sixty position estimates for the tomatoes. During these experiments,

Gaussian kernels underperformed compared to square kernels, with no significant difference

observed between the results of weighted and geometric centre estimations despite the for-

mer exhibiting a lower error for the same standard deviation. That could be due to real noise

that seriously affects the behaviour of the Gaussian kernel. Further essays should study softer

Gaussian kernels, making the MonoVisual3DFilter more robust to noise.
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Figure 4.16: Error in estimating the position of tomatoes in the laboratory testbed.

Table 4.1: Error analysis for the laboratory testbed experiments, comparing different kernels
and centre estimation methods.

MAPE (%) MAE (m) RMSE (m) MSE (m2)
Euclidean Error

(Avg) (m)

Square kernel and

Weighted centre
63.52 10.0×10−3 14.8×10−3 219×10−6 20.5×10−3

Square kernel and

Geometric centre
63.51 10.1×10−3 14.8×10−3 220×10−6 20.6×10−3

Gaussian kernel and

Weighted centre
57.35 11.6×10−3 18.4×10−3 340×10−6 22.2×10−3

Gaussian kernel and

Weighted centre
74.15 12.7×10−3 22.3×10−3 496×10−6 20.4×10−3

The BVE, when combined with the EKF, presents a strategy that either complements or

competes with the MonoVisual3DFilter. This approach can estimate the position of fruits in

the 3D task space using a monocular camera based on the perception of the fruit. We con-

ducted ten experiments, as detailed in section 4.2.2.2, employing various optimisation func-

tions and constraints. For each experiment, one hundred simulations were performed, and
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the average errors are reported in the table 4.2. Additionally, samples of the motion generated

in each experiment are depicted through the plots in Figure 4.17.

Table 4.2: Error computations for the centre estimation using the BVE and the EKF

MAPE (%) MAE (m) RMSE (m) MSE (m2)

E2.1 5.124 37.1×10−3 15.5×10−3 242×10−6

E2.2 12.86 52.5×10−3 25.5×10−3 650×10−6

E2.3 8.639 53.8×10−3 28.1×10−3 791×10−6

E2.4 11.65 57.2×10−3 29.1×10−3 848×10−6

E2.5 10.62 60.9×10−3 31.2×10−3 971×10−6

E2.6 32.38 53.5×10−3 26.3×10−3 690×10−6

E2.7 14.79 53.1×10−3 24.7×10−3 612×10−6

E2.8 12.62 48.0×10−3 21.2×10−3 448×10−6

E2.9 10.44 53.0×10−3 23.4×10−3 548×10−6

E2.10 20.06 62.3×10−3 31.3×10−3 983×10−6

Overall, our analysis suggests that using a differentiable loss function (as seen in experi-

ments E2.1 to E2.5), such as the dispersion (4.28), offers advantages over a non-differentiable

loss function (experiments E2.6 to E2.10), like (4.29), which relies on a maximum operation.

Empirical analysis comparing the performance of both loss functions under identical condi-

tions indicates that the dispersion loss function is not only more efficient in terms of com-

putation – owing to one fewer matrix inversion – but also results in lower error rates in fruit

position estimation. This is because the camera has greater freedom to navigate around the

region of interest. In both strategies, the BVE tends to plan an approximated circular path,

from scenarios where the algorithm freely designs its path to those with more restrictions, as

illustrated in the Figures 4.17. These circular paths do not always happen in the same plan

but in various plans, even transversal plans, as expected.

The initial analysis provided insights into the performance of the two models but left the

exploration of their limitations and recovery capabilities untouched. Therefore, we expanded

our investigation to include a recoverability analysis for both loss functions. This was accom-

plished by conducting multiple tests aimed at accurately estimating the positions of fruits

in the 3D task space, starting with an initial estimation error ranging from 0 cm to 50 cm, in

1 cm increments. For each level of initial error, we carried out ten simulations, averaging the

results to maintain consistency across the benchmark. Figures 4.18 and 4.19 depict the vari-

ance in average errors under different initial conditions. To simplify, we focused on extreme

scenarios only, namely tests E2.1, E2.5, E2.6, and E2.10. These tests were chosen for their

straightforward conditions – an average object distance of 1 m and full restrictions, including

manoeuvrability constraints. The findings suggest that both loss functions perform compa-

rably under stringent conditions. However, the dispersion minimisation loss function (4.28)

allows for greater initial estimation errors, is more straightforward to compute, and facilitates

quicker and easier next viewpoint estimation.
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While effective in identifying the best viewpoint for estimating fruit positions, it is critical

to ensure that the sensory apparatus can also move towards the object for additional tasks.

This involves first positioning the fruit and then approaching it. Employing a well-designed

loss function, such as (4.31), allows the BVE + EKF algorithms to iteratively refine the fruit’s

position while advancing towards it. Figure 4.20 demonstrates a potential sensor path from

the starting pose to the object under constraint E2.5, showcasing a circular trajectory as the

algorithm corrects the fruit’s position.
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Figure 4.17: Sample paths generated by the different experiments to assess the fruit’s position.

Similarly, we also analysed the recoverability of the algorithm employing the loss func-

tion (4.31). The results, depicted in figure 4.21, indicate that this function leads to poorer

performance and greater error accumulation. The algorithm remains reliable with an initial

estimation error up to about 15 cm. Beyond this threshold, the resulting final estimation error

becomes excessively large.

4.4 Discussion

The MonoVisual3DFilter demonstrates effectiveness in estimating the 3D position of

tomato fruits with promising results. When tested in a simulated environment, the system

consistently achieved a maximum error of less than 10 mm. Enhancing the resolution of

the discretised state space could potentially improve the system’s accuracy, albeit at the

cost of increased processing time and memory consumption. Introducing noise into the

system, as done in the second experiment, highlights the significance of employing smooth

kernels. Unlike the square kernel, which, due to its binary aggressive behaviour, may reject

some state space positions irrecoverably, the Gaussian filter exhibits a smooth approach,
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Figure 4.18: Average error for the recoverability of the loss functions for the BVE + EKF con-
sidering different initial estimation errors.



128 Towards active perception

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Initial deviation error to real position (m)

66.8

66.9

67

67.1

67.2

67.3

67.4

67.5

67.6

67.7

67.8

E
rr

o
r 

(%
)

MAPE

(a) E2.1

0 0.1 0.2 0.3 0.4 0.5

Initial deviation error to real position (m)

66.8

67

67.2

67.4

67.6

67.8

68

68.2

68.4

E
rr

o
r 

(%
)

MAPE

(b) E2.6

0 0.1 0.2 0.3 0.4 0.5

Initial deviation error to real position (m)

66.8

67

67.2

67.4

67.6

67.8

68

68.2

68.4

68.6

E
rr

o
r 

(%
)

MAPE

(c) E2.5

0 0.1 0.2 0.3 0.4 0.5 0.6

Initial deviation error to real position (m)

66.8

67

67.2

67.4

67.6

67.8

68

68.2

68.4

68.6

E
rr

o
r 

(%
)

MAPE

(d) E2.10

Figure 4.19: Average MAPE for the recoverability of the loss functions for the BVE + EKF con-
sidering different initial estimation errors.
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Figure 4.20: Sensor approximation’s path using the loss function (4.31) and the restrictions
such as in E2.5

iteratively eliminating positions based on their proximity to the filter’s centre. This allows

for the recovery of some points in the state space, making smooth kernels advantageous.

Furthermore, the Gaussian filter, despite being more prone to failures in detecting fruits

compared to the square kernel, enables a more accurate estimation of the tomato’s centre by

prioritising positions nearer to it and reducing deviations caused by sparse clouds.

However, when applying the algorithm to a real robot and camera set-up in a testbed, the

performance deviated from expectations. Surprisingly, the Gaussian kernels were less effec-

tive, and square kernels yielded higher accuracy. In this real-world application, the choice

between geometric or weighted centre estimations became irrelevant. The system reported

a MAE of about 20 mm, which could increase to nearly 60 mm, potentially limiting the algo-

rithm’s applicability for more precision-demanding tasks. Despite these findings, it’s crucial

to further investigate the source of the error, whether it stems from the MonoVisual3DFilter

or inaccuracies in the baseline used for ground truth, which could be poorly aligned with the

tomato’s centre. It was noted that positioning the camera closer to the fruits could potentially

diminish the error margin. The observed error levels might not be critical for applications in-

volving soft-grippers for harvesting or when used alongside complementary algorithms. For

monitoring purposes, the impact of such errors could be even less significant.

Additional experiments shed light on the importance of selecting appropriate viewpoints.

Co-linear viewpoints failed to effectively estimate the positions of objects, whereas view-

points arranged perpendicularly to one another enhanced the filter’s view intersection, lead-

ing to more accurate estimations. This consideration is particularly relevant in real-world and

testbed scenarios, where manipulators often face positional and orientational constraints.

The feasibility of employing the MonoVisual3DFilter for partially occluded fruits was also

evaluated. While completely occluded objects remain beyond the detection capabilities of

the algorithm, the MonoVisual3DFilter could handle partial occlusions effectively, estimating

the positions of tomatoes with reasonable accuracy. This suggests that the MonoVisual3DFil-

ter is relatively unaffected by occlusions in terms of object position estimation.
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Figure 4.21: Average Error and MAPE for the recoverability of the loss functions for the BVE +
EKF considering different initial estimation errors for the loss function (4.31) and the restric-
tions such as in E2.5.

Additionally, both the BVE and EKF algorithms showed promise in simulating the posi-

tion estimation of fruits, warranting further investigation in laboratory and real-world con-

ditions to fully validate the algorithms. At this stage, it appears that the MonoVisual3DFilter

slightly outperforms these algorithms in a simulated environment. Employing both BVE and

EKF alongside the MonoVisual3DFilter could complement their results, enhancing the ac-

curacy of region of interest positioning. An ensemble strategy that combines both solutions

could refine the object’s position estimation, as illustrated in Figure 4.22, based on the con-

fidence delivered by each algorithm. Such an ensemble model [284], carefully designed and

benchmarked against state-of-the-art methodologies, could offer a more effective solution

for precise object positioning.

MonoVisual3DFilter

Input

Sensor
Data

EKF

Sensor
repositioning

Constraints

BVE Position 
estimation

Model 
Ensemble

Figure 4.22: Diagram of a proposal algorithm to ensemble the results of multiple algorithms.

In the reviewed literature, it is evident that DL solutions are frequently applied to deduce

depth information from monocular RGB cameras, as highlighted in section 2.6.2. A notable

example of such a solution is the MiDaS network, which is designed to efficiently estimate
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depth from images [285, 286]. For the purpose of comparison with the MonoVisual3DFilter,

the MiDaS v3.1 DPT SWIN2 Large 384 model was utilised on the images from our experiment,

as shown in Figures 4.7g, 4.7h, and 4.7i. The results, depicted in Figure 4.23, reveal the outputs

of the MiDaS CNN for the selected images. Since the network generates a relative pose, cali-

bration is necessary to accurately estimate the objects’ real depth from the camera. According

to [285], the absolute depth can be determined using a linear regression curve. Following this

approach, a preliminary calibration was conducted, the results of which are illustrated in Fig-

ure 4.24a. Despite these efforts, as can be inferred from Figure 4.23, the depth images appear

flat, making it challenging to discern the depth of the fruit.

Consequently, the network struggles to accurately determine the fruit’s position, with er-

rors reaching up to 10 cm as shown in Fig. 4.24b. However, further depth assessments and

calibration processes are necessary to definitively ascertain the limitations of MiDaS in-depth

estimation. Specifically, MiDaS may require a complete RGB-D system to calibrate the RGB

sensor and network properly. Despite these shortcomings, it is important to note that DL-

based solutions generally demand significant computational resources and are not straight-

forward, complicating efforts to enhance results and identify error sources. Moreover, they

necessitate extensive training and reliable data. Conversely, the MonoVisual3DFilter is inde-

pendent of data, offering more predictable performance.

At the current development phase, comparisons with state-of-the-art methodologies like

the BVE and EKF are preliminary. A comprehensive comparison with the state-of-the-art ne-

cessitates experiments under robotic simulation conditions or real-world scenarios, either

controlled or uncontrolled. Nonetheless, a comparative analysis of the results presented in

table 4.2 suggests certain conclusions. Despite achieving superior outcomes, the operational

capabilities of manipulators may be hindered by less stringent constraints due to their inher-

ent limitations. Therefore, not all camera poses selected may be feasible for the manipulators.

Opting for intermediate solutions that consider both the features of the manipulator and the

operational area, including the camera’s positioning relative to the fruit, can yield satisfactory

results with minimal estimation errors. Nonetheless, the feasibility of selected poses remains

a critical challenge.

(a) (b) (c)

Figure 4.23: RGB and Depth images from the MiDaS v3.1 DPT SWIN2 Large 384 for estimating
the tomatoes’ distance to the camera’s sensor.

The MonoVisual3DFilter can estimate objects’ position in 3D space, particularly those

that are circular. This algorithm is computationally intensive, requiring significant resources

and time to compute a solution. In our testing, it took approximately one minute per pose

to compute the decomposed state space on an Intel Core i7 with 8 GB of RAM. However, the
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Figure 4.24: Calibration curve to estimate the absolute depth in metres to the camera sensor
for MiDaS CNN

algorithm is highly parallelisable since all positions are independent and can be computed

simultaneously, allowing for potential speed improvements.

Implementing the MonoVisual3DFilter in parallel on a CPU, GPU, or especially an FPGA

could significantly enhance inference speeds. Additionally, optimising the code, particularly

by utilising more efficient programming languages like C or C++ instead of the less efficient

Python, could further improve performance.

To assess the benefits of parallelising the MonoVisual3DFilter, we applied Amdahl’s law

[287], represented by the equation 4.56. In this equation,σ(n )denotes the inherently sequen-

tial computations,ϕ(n ) represents the potentially parallel computations, and p is the number

of processors. It is important to note that Amdahl’s law does not account for communication

between processes, thus only calculating the maximum theoretical speedup, Ψ (n ,p ).
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Figure 4.25: Analysis of maximum speedup for parallelisation according to Amdahl’s Law for
the Gaussian and Square kernels.
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Ψ (n ,p )⩽
σ(n )+ϕ(n )

σ(n )+
ϕ(n )

p

(4.56)

Our study illustrated the maximum achievable speedup through parallelisation in the plot

4.25. We observed that using the Gaussian filter, a significant speedup of about 17.5 was

achievable. However, the square kernel, being a more straightforward operation, produced

a lower speedup, limited by the inherently sequential operations that cannot be optimised.

In simulations on a computer with an Intel Core i7 and 8 GB of RAM, the histogram filter’s

performance was around 2 s per pose with the Gaussian Filter and the square kernel without

parallelisation. The number of available cores also influences the speedup potential of the

histogram filter. Given its high parallelisability, the algorithm benefits from utilising many

cores, making CPUs less appealing compared to GPUs or FPGAs, which are not as limited in

the number of cores.

4.5 Conclusion

In this experiment, we developed a histogram filter-based algorithm named MonoVisu-

al3DFilter to determine the 3D positions of tomatoes within the canopy of the tomato plant

using monocular cameras. The algorithm showed promising results, achieving an overall

error margin of approximately 20 mm in conditions controlled within a laboratory environ-

ment. To complement the MonoVisual3DFilter, we also implemented the BVE and EKF algo-

rithms. The BVE algorithm aims to minimise the covariance observation error across regions

of interest by estimating new viewpoints. On the other hand, the EKF uses known character-

istics of the objects to iteratively estimate the positions of the fruits. In mathematical simu-

lations, this combined approach reported an error ranging from 15 mm to 32 mm.

While the MonoVisual3DFilter proved effective in estimating the positions of tomatoes,

it requires further improvements. Future efforts should focus on optimising the selection of

observation poses, allowing these poses to be adjustable and variable depending on the fruit

being analysed, and enhancing observability through intelligent algorithms like the BVE. Inte-

grating the BVE with the MonoVisual3DFilter could significantly enhance the system, moving

it towards an active perception system. Additionally, we could improve the execution time by

optimising the existing code and employing parallelisation strategies.

Further testing of the BVE and EKF algorithms in both robotics simulation and controlled

laboratory conditions is essential to fully validate their effectiveness for operational active

perception robotics.

Once both algorithms are thoroughly validated, investigating ensemble strategies to com-

bine the outcomes provided by the MonoVisual3DFilter and the BVE+ EKF should be consid-

ered. This approach could help in reducing errors and biases, thereby yielding more accurate

estimations for the objects.
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Therefore, employing histogram filters, specifically the MonoVisual3DFilter, for object

position estimation is feasible and appropriate for use in controlled field conditions. Fu-

ture studies should explore real-world applications as well as the implementation of active

perception strategies. Moreover, incorporating the BVE represents a promising direction for

enhancing the MonoVisual3DFilter. Integrating Kalman filters with the BVE is also seen as a

viable solution for achieving our objectives.



Chapter 5

Conclusions and Future Work

5.1 Conclusions

This thesis investigates active perception techniques for enhancing autonomous harvest-

ing in open-field environments with manipulation and mobile robots. The study unfolds in

two principal phases: the initial focus on perception strategies for fruit detection under vary-

ing weather conditions, followed by an examination of sensor placement for improved region

monitoring.

A pivotal goal, as outlined at the beginning (goal 1), queries whether a robotic manipulator

can effectively detect and harvest fruits in unstructured environments using cost-effective

and compact sensors. This overarching inquiry was subdivided into three detailed research

questions:

1. The exploration of RGB cameras’ effectiveness in fruit and tree detection forms the first

research question. Despite inherent limitations, these cameras offer cost-efficiency

and versatility, easily adapting to different scenarios. The emergence of DL has revo-

lutionised image analysis, enabling precise identification of diverse objects under var-

ious conditions. This study concentrated on rapid-processing object detection algo-

rithms, such as YOLOs and SSDs, leveraging different backbones to recognise various

fruits. Given the unpredictable nature of DL models, additional image analysis tech-

niques based on colour features were also applied to refine detection accuracy.

2. The second question investigates the capability to detect fruits within the 3D task space

rather than merely in the image space. Although RGB-D sensors are widely referenced

in literature, their effectiveness is compromised in open-field environments due to un-

controllable natural and weather disturbances. The research introduced two novel al-

gorithms to the field: the MonoVisual3DFilter and the BVE+ EKF. Both algorithms em-

ploy triangulation for task space analysis from different perspectives. The MonoVisu-

al3DFilter relies on histogram filters and object detection algorithms, whereas the BVE

+ EKF maximises observation orthogonality and utilises an EKF for iterative position

135
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estimation of the regions of interest. These algorithms demonstrated potential but ne-

cessitated further validation under real conditions.

3. The third question delves into the acceleration and optimisation possibilities for the

proposed algorithms, focusing on the computing demands that pose challenges for

practical robot implementation. Early development stages of the MonoVisual3DFil-

ter and the BVE + EKF preclude extensive optimisation studies; hence, the emphasis

shifted to enhancing object detection algorithms. Investigations centred on small, fast

DL models like YOLO, SSD MobileNet v2, and RetinaNet ResNet 50, with the latter show-

ing less efficiency. Improvement efforts involved acceleration devices like TPUs, GPUs,

and FPGAs, with FPGAs emerging as highly configurable options. Using the RetinaNet

ResNet 50 on an AMD-Xilinx ZCU104, inference speeds of up to 25 FPS were achieved.

This thesis also contributes to the agricultural domain by releasing specific datasets

in open access, including the TRIBE AGROset [213], a comprehensive dataset featuring 22

classes of trees, fruits, and vegetables.

Our research is competitive with the current literature at different levels. In the area of

object detection, we use state-of-the-art DL models and also provide remarkable datasets

specifically designed for agricultural contexts. We have improved these models by using ded-

icated hardware, and provide a complete performance analysis to show that object detectors

can now be accelerated to meet the requirements of near real-time detection robots.

For 3D localisation of objects, we take a more classical approach based on statistical anal-

ysis instead of using state-of-the-art ML and DL models. This approach results in a more

predictable solution and makes it more reliable. As a result, this solution is easier to certify

for operational robots.

In summary, this research advances the state-of-the-art in object detection through DL

models and significantly enriches the agricultural community with valuable datasets. Be-

sides, this research also contributes to algorithms for object localisation in the 3D space using

monocular cameras.

5.2 Future Work

Several objectives can be established for future work based on the available solutions and

their respective limitations. However, the ultimate goal should be developing a dependable

robotic system that can effectively operate in the field autonomously.

To achieve this, it is crucial to incorporate an accelerated visual perception system into

a mobile manipulator to identify regions of interest. Additionally, the system should be

equipped with other essential features, including the ability to identify cutting points and

relevant monitoring points in agricultural contexts.

Furthermore, after thorough validation, the MonoVisual3DFilter and the BVE + EKF

should be combined to enhance the accuracy of their respective results and provide a more
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precise position of the fruit. In case of failure, these solutions should also be able to substitute

for each other.

Once all components are integrated, the robotic system should evolve to gather more

comprehensive information about the scene and register it for improved operation. The ac-

tive perception system should also have the capacity to utilise the robot’s complementary

sensors to augment the provided information and validate its results.
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Appendix A

The Literature Review Protocol

A.1 Introduction

The literature review presented in chapter 2 is underpinned by a comprehensive system-

atic review conducted in accordance with the PRISMA protocol, elaborately detailed in the

study by Magalhães et al. [C41]. Adhering to the PRISMA protocol ensures a rigorous and

replicable methodology, facilitating the re-examination of the review’s conclusions with pre-

cision. Consequently, the primary goal of this appendix is to meticulously outline the protocol

employed during the literature review process detailed in Chapter 2.

The rationale methodology guiding the literature review is outlined in section 2.1, em-

phasizing the exploration of active perception applications within the agricultural sector.

A.1.0.1 Objectives

The systematic review critically evaluates existing literature on deploying active percep-

tion in harvesting robots. The study’s primary objectives are to elucidate:

• the main strategies used by the authors to detect the fruits under natural conditions;

• strategies devised to address challenges posed by occluded fruits and stems;

• leading approaches for harvesting fruits;

• sensor technologies utilised for fruit and tree detection;

• mechanisms through which robots enhance their understanding of the surrounding

environment.

The scope of this research is delineated within the PICOC1 framework as outlined by

Wohlin et al. [288]:

Population: harvesting robots

1Population—intervention—comparison—outcome—context
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Intervention: fruit detection, segmentation and harvesting using active perception

Comparison: not applicable for the current study

Outcome: A set of different, and cascade algorithms able to perceive the environment and

control the robot with the goal of acquiring information about the environment and

actively detecting the most important key points for successfully harvesting the ripe

fruits.

Context: For this research, is mainly considered the primary publications of robots in the

agricultural context.

It’s important to note that this review specifically targets harvesting strategies and the

componentry of robotic harvesters, explicitly excluding an analysis of the harvesting tools

themselves.

A.1.1 Literature review methodology

A.1.1.1 Search strategy and selection and data collection processes

Following a comprehensive investigation of scientific databases, it is imperative to report

thousands of articles for review. Establishing inclusion and exclusion criteria facilitates a fair

evaluation of these publications. For the systematic review process, we employed the on-

line tool Parsifal [289], which aids in structuring the entire research methodology – including

protocol definition, elimination of duplicates, screening, quality assessment, and data extrac-

tion.

In this systematic review, our focus was exclusively on primary indexed publications con-

cerning fruit harvesting robots from 2016 up to September 21, 2021. After removing dupli-

cated entries, the remaining publications were screened based on their titles and abstracts.

They were excluded if they met any of the following criteria:

• The publication does not refer to a fruit harvesting robot in agriculture.

• The publication is not in English.

• The publication dates back to before 2016.

• The publication is not a primary manuscript2.

Subsequently, we conducted a thorough reading of the chosen manuscripts. Each

manuscript underwent a quality assessment to ascertain its alignment with the objectives of

the current study. The assessment evaluated each manuscript on three parameters: Yes (1.0),

Partially (0.5), and No (0.0). Publications scoring less than 3.0 were excluded from further

data extraction. The quality assessment criteria included:

2Here, a primary manuscript is defined as works that present an experimental study, a benchmark, or introduce
a new algorithm or method within the agricultural domain specifically for fruit harvesting.
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• Does the paper refer the sensory system?

• Does the work incorporate active perception?

• Did the authors implement a scene information-enhancement algorithm?

• Did the authors employ detection, segmentation, or both?

• Is the research applicable to agriculture and harvesting robots?

• Was the work tested in real-world scenarios3?

In the data extraction phase, we compiled information on:

• The fruits targeted by the studies;

• The sensory systems utilised;

• Strategies for fruit detection and segmentation; and,

• Any additional active perception algorithms.

As the review progressed, it became evident that most publications primarily focused on

detection and segmentation algorithms. Consequently, the review had to be partially con-

centrated on this aspect.

The literature review was limited to publications sourced from scientific databases: ACM

Digital Library [290], EI Compendex [291], IEEE Digital Library [292], ISI Web of Science [293],

and Scopus [294]. The search utilised the following base string, with necessary adaptations

for each database’s specific requirements:

1 (robot*) AND (agricultur* OR harvest* OR open-field OR prun*) AND ("active

perception" OR "active sensing" OR "active vision" OR "viewpoint" OR

detect OR segment* OR "visual servoing") AND (fruit)

The term robot* aims to capture all publications mentioning robot, robots, robotic,

or robotics. With interest in harvesting robots, the terms agricultur* OR harvest*

OR open-field OR prun* target publications related to agricultural robots, harvest-

ing, pruning, or those designed for open-field environments. Lastly, a specific focus on

robots employing active perception for fruit harvesting is encapsulated by ("active

perception" OR "active sensing" OR "active vision" OR viewpoint OR

detect* OR segment* OR "visual servoing") AND (fruit), thereby including

manuscripts on detection, segmentation, and manuscripts discussing active sensing or

perception as synonyms. The term "viewpoint" (also known as viewpoint selection) is

considered a component of active perception within this context.

3Real-world scenarios include open-field farms, agricultural environments, and greenhouses, as opposed to
simulations or laboratory testbeds.
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A.1.1.2 Search results

The search conducted with the specified base key string across various databases yielded

a total of 1034 publications within the period from 2016 to 2021. Figure A.1 illustrates the

distribution of publications among these databases. It was observed that all databases con-

tributed an even number of publications, with the exception of the IEEE Digital Library, which

accounted for a smaller share. In contrast, the Scopus database appeared more generic, en-

compassing a broader range of manuscripts from various publishers. Furthermore, while the

ISI Web of Science and EI Compendex databases are not limited to specific publishers, they

implement more stringent indexing criteria and tend to be more focused on particular fields

(mainly, EI Compendex – Engineering Village).

Figure A.1: Distribution of publications across databases based on the search key utilised

An annual reorganisation of the collected data revealed a significant trend within the

scope of the current review, as depicted in Figure A.2. Since 2016, there has been a notable

increase in publication volume, with 2021 experiencing a slight decline. However, it is

important to mention that the analysis for 2021 only extends up to September 21st.

Figure A.3 outlines the publication selection process for this systematic review, adher-

ing to the PRISMA standards as described by [295]. Initially, all potential publications were

identified, followed by the removal of duplicates. The screening phase involved examining

the titles, abstracts, and figures of articles to determine relevance. Publications not meeting

the predefined exclusion criteria were subsequently eliminated. A thorough review of the re-

maining publications assessed their quality and relevance to the research questions. Out of

the 1034 identified publications, only 195 were ultimately deemed suitable for inclusion in

the literature review.

This structured approach ensures a comprehensive and methodical examination of the

literature within the defined scope, thereby enhancing the reliability and depth of the review

findings.
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Figure A.2: Yearly evolution of publication volume for the investigated search key.

Identification 
 

Records identified from:
   - Scopus (n=299)
   - ACM Digital Library (n=214)
   - EI Compendex (n=223)
   - IEEE Digital Library (n=86)
   - ISI Web of Science (n=212)

Screening
 

Records screened (n=754) 

Records removed before
screening: 
   - Duplicated (n=280)

Records Excluded
(n=504)

Quality assessment 

Records assessed (n=250)

Records excluded
(n=55)

Included 

Records included (n=195)

Figure A.3: PRISMA flow diagram illustrating the publication selection process for the sys-
tematic review

A.2 Conclusion

The protocol outlined so far presents a rigorous approach to conducting a systematic re-

view. This strict methodology, however, poses challenges for incorporating subsequent de-

velopments in the state-of-the-art that may emerge during the evolution of the current PhD

thesis.

To accommodate these advancements, the literature review protocol was slightly adapted
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beyond its initial parameters, yet its fundamental nature was preserved. This adaptation pri-

marily facilitated the inclusion of new research focusing on fruit detection methodologies and

acceleration strategies.

For readers specifically interested in adhering to the original systematic review frame-

work, a detailed description can be found in [C41].



Appendix B

Sample images of the assessment of

VineSet and ResNet 50 in

heterogeneous platforms

In the chapter 3, we perform multiple essays searching for effective and fast solutions

for object detection. Suitable solutions come from deploying one-shot object detectors into

high-performing devices such as embedded GPUs, FPGAs, or ASICs – like TPUs, OAK-SoM,

or NCSs. These devices, besides being low-power consumption, also provide dedicated re-

sources to execute ANNs.

The cost behind deploying DL models into dedicated hardware is to quantise their layers

and use dedicated software for that purpose. Sometimes, that implies losing some accuracy.

Figure 3.37 in section 3.3.2 provides a general analysis of these symptoms, derived from

the experiments detailed in section 3.2.3. However, that figure illustrates an overlapping of

the multiple tested heterogeneous platforms, difficulting the analysis of the illustrated loss

of accuracy is difficult. Therefore, Figures B.1 to B.10 reference a more detailed view of the

previous study and allow a deeper observation of the reported conclusions.

Generically, all devices performed similarly and can be used for object detection accord-

ing to the desired requirements. Sometimes, the TPU looks to perform better, eventually due

to the quantisation process that created a more strict network. In other situations, that may

mean also a loss of accuracy.

145
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(a) Ground truth (b) RTX3090 TF2 (c) TF-TRT FP32 (d) TF-TRT FP16

(e) TF-TRT INT8 (f) KV260 (g) ZCU104 (h) TPU

Figure B.1: Detailed sample image 3.37a from figure 3.37 from Blue – ground-truth; light green
– NVIDIA RTX3080 TF2; orange – NVIDIA RTX3090 TF-TRT FP32; brown – NVIDIA RTX3090
TF-TRT FP16; dark yellow – NVIDIA RTX3090 TF-TRT INT8; red – AMD-Xilinx Kria KV260;
dark green – AMD-Xilinx ZCU104; pink – Coral Dev Board TPU

(a) Ground truth (b) RTX3090 TF2 (c) TF-TRT FP32 (d) TF-TRT FP16

(e) TF-TRT INT8 (f) KV260 (g) ZCU104 (h) TPU

Figure B.2: Detailed sample image 3.37b from figure 3.37 from Blue – ground-truth; light green
– NVIDIA RTX3080 TF2; orange – NVIDIA RTX3090 TF-TRT FP32; brown – NVIDIA RTX3090
TF-TRT FP16; dark yellow – NVIDIA RTX3090 TF-TRT INT8; red – AMD-Xilinx Kria KV260;
dark green – AMD-Xilinx ZCU104; pink – Coral Dev Board TPU
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(a) Ground truth (b) RTX3090 TF2 (c) TF-TRT FP32 (d) TF-TRT FP16

(e) TF-TRT INT8 (f) KV260 (g) ZCU104 (h) TPU

Figure B.3: Detailed sample image 3.37c from figure 3.37 from Blue – ground-truth; light green
– NVIDIA RTX3080 TF2; orange – NVIDIA RTX3090 TF-TRT FP32; brown – NVIDIA RTX3090
TF-TRT FP16; dark yellow – NVIDIA RTX3090 TF-TRT INT8; red – AMD-Xilinx Kria KV260;
dark green – AMD-Xilinx ZCU104; pink – Coral Dev Board TPU

(a) Ground truth (b) RTX3090 TF2 (c) TF-TRT FP32 (d) TF-TRT FP16

(e) TF-TRT INT8 (f) KV260 (g) ZCU104 (h) TPU

Figure B.4: Detailed sample image 3.37d from figure 3.37 from Blue – ground-truth; light green
– NVIDIA RTX3080 TF2; orange – NVIDIA RTX3090 TF-TRT FP32; brown – NVIDIA RTX3090
TF-TRT FP16; dark yellow – NVIDIA RTX3090 TF-TRT INT8; red – AMD-Xilinx Kria KV260;
dark green – AMD-Xilinx ZCU104; pink – Coral Dev Board TPU
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(a) Ground truth (b) RTX3090 TF2 (c) TF-TRT FP32 (d) TF-TRT FP16

(e) TF-TRT INT8 (f) KV260 (g) ZCU104 (h) TPU

Figure B.5: Detailed sample image 3.37e from figure 3.37 from Blue – ground-truth; light green
– NVIDIA RTX3080 TF2; orange – NVIDIA RTX3090 TF-TRT FP32; brown – NVIDIA RTX3090
TF-TRT FP16; dark yellow – NVIDIA RTX3090 TF-TRT INT8; red – AMD-Xilinx Kria KV260;
dark green – AMD-Xilinx ZCU104; pink – Coral Dev Board TPU

(a) Ground truth (b) RTX3090 TF2 (c) TF-TRT FP32 (d) TF-TRT FP16

(e) TF-TRT INT8 (f) KV260 (g) ZCU104 (h) TPU

Figure B.6: Detailed sample image 3.37f from figure 3.37 from Blue – ground-truth; light green
– NVIDIA RTX3080 TF2; orange – NVIDIA RTX3090 TF-TRT FP32; brown – NVIDIA RTX3090
TF-TRT FP16; dark yellow – NVIDIA RTX3090 TF-TRT INT8; red – AMD-Xilinx Kria KV260;
dark green – AMD-Xilinx ZCU104; pink – Coral Dev Board TPU
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(a) Ground truth (b) RTX3090 TF2 (c) TF-TRT FP32 (d) TF-TRT FP16

(e) TF-TRT INT8 (f) KV260 (g) ZCU104 (h) TPU

Figure B.7: Detailed sample image 3.37g from figure 3.37 from Blue – ground-truth; light green
– NVIDIA RTX3080 TF2; orange – NVIDIA RTX3090 TF-TRT FP32; brown – NVIDIA RTX3090
TF-TRT FP16; dark yellow – NVIDIA RTX3090 TF-TRT INT8; red – AMD-Xilinx Kria KV260;
dark green – AMD-Xilinx ZCU104; pink – Coral Dev Board TPU

(a) Ground truth (b) RTX3090 TF2 (c) TF-TRT FP32 (d) TF-TRT FP16

(e) TF-TRT INT8 (f) KV260 (g) ZCU104 (h) TPU

Figure B.8: Detailed sample image 3.37h from figure 3.37 from Blue – ground-truth; light green
– NVIDIA RTX3080 TF2; orange – NVIDIA RTX3090 TF-TRT FP32; brown – NVIDIA RTX3090
TF-TRT FP16; dark yellow – NVIDIA RTX3090 TF-TRT INT8; red – AMD-Xilinx Kria KV260;
dark green – AMD-Xilinx ZCU104; pink – Coral Dev Board TPU
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(a) Ground truth (b) RTX3090 TF2 (c) TF-TRT FP32 (d) TF-TRT FP16

(e) TF-TRT INT8 (f) KV260 (g) ZCU104 (h) TPU

Figure B.9: Detailed sample image 3.37i from figure 3.37 from Blue – ground-truth; light green
– NVIDIA RTX3080 TF2; orange – NVIDIA RTX3090 TF-TRT FP32; brown – NVIDIA RTX3090
TF-TRT FP16; dark yellow – NVIDIA RTX3090 TF-TRT INT8; red – AMD-Xilinx Kria KV260;
dark green – AMD-Xilinx ZCU104; pink – Coral Dev Board TPU

(a) Ground truth (b) RTX3090 TF2 (c) TF-TRT FP32 (d) TF-TRT FP16

(e) TF-TRT INT8 (f) KV260 (g) ZCU104 (h) TPU

Figure B.10: Detailed sample image 3.37j from figure 3.37 from Blue – ground-truth; light
green – NVIDIA RTX3080 TF2; orange – NVIDIA RTX3090 TF-TRT FP32; brown – NVIDIA
RTX3090 TF-TRT FP16; dark yellow – NVIDIA RTX3090 TF-TRT INT8; red – AMD-Xilinx Kria
KV260; dark green – AMD-Xilinx ZCU104; pink – Coral Dev Board TPU
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